Skip to main content
Log in

Inverse estimation for unknown fouling geometry on inner wall of forced-convection pipe

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A conjugate gradient method (CGM) based on the inverse algorithm is used to estimate the unknown fouling-layer profile on the inner wall of a pipe system using simulated temperature measurements taken within the pipe wall. It is assumed that no prior information is available about the functional form of the unknown profile. Therefore, the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The accuracy of the inverse analysis is examined using the simulated exact and inexact temperature measurements. The results show that the excellent estimation of the fouling-layer profile can be obtained for the test case considered in this study. The technique presented in this study can be used in a warning system to call for pipe maintenance when the thickness of fouling exceeds a predefined criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

h :

convection heat transfer coefficient W·m−2·K−1

J :

functional

J′:

gradient of functional

k :

thermal conductivity, W·m−1·K−1

L :

length of the pipe, m

M :

total number of measuring positions

p :

direction of descent

R 1 :

inner radius of the pipe, m

R 2 :

outer radius of the pipe, m

r :

spatial radial coordinate, m

T :

temperature, K

T in :

inlet temperature, K

T :

ambient temperature, K

u x :

axial fluid velocity, m·s−1

x :

spatial axial coordinate, m

Y :

measurement temperature, K

Δ:

small variation quality

α :

thermal diffusivity, m2·s−1

β :

step size

γ :

conjugate coefficient

η :

very small value

λ :

variable used in the adjoint problem

σ :

standard deviation

\( \varpi \) :

random variable

References

  1. Jarny, Y., Ozisik, M. N., and Bardon, J. B. A general optimization method using an adjoint equation for solving multidimensional inverse heat conduction. International Journal of Heat and Mass Transfer, 34(11), 2911–2919 (1991)

    Article  MATH  Google Scholar 

  2. Yang, Y. C., Chu, S. S., and Chang, W. J. Thermally-induced optical effects in optical fibers by inverse methodology. J. Appl. Phys., 95(9), 5159–5165 (2004)

    Article  Google Scholar 

  3. Chen, W. L., Yang, Y. C., and Lee, H. L. Inverse problem in determining convection heat transfer coefficient of an annular fin. Energy Conversion and Management, 48(4), 1081–1088 (2007)

    Article  Google Scholar 

  4. Chiang, C. C. and Chou, S. K. Inverse geometry design problem in optimizing hull surfaces. Journal of Ship Research, 42(2), 79–85 (1998)

    Google Scholar 

  5. Huang, C. H. and Chen, H. M. An inverse geometry problem of identifying growth of boundary shapes in a multiple region domain. Numerical Heat Transfer, Part A: Applications, 35(4), 435–450 (1999)

    Article  Google Scholar 

  6. Park, H. M. and Shin, H. J. Empirical reduction of modes for the shape identification problems of heat conduction systems. Computer Methods in Applied Mechanics and Engineering, 192(15), 1893–1908 (2003)

    Article  MATH  Google Scholar 

  7. Park, H. M. and Shin, H. J. Shape identification for natural convection problems using the adjoint variable method. J. Comput. Phys., 186(1), 198–211 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Divo, E., Kassab, A. J., and Rodriguez, F. An efficient singular superposition technique for cavity detection and shape optimization. Numerical Heat Transfer, Part B: Foundamentals, 46(1), 1–30 (2004)

    Article  Google Scholar 

  9. Kwag, D. S., Park, I. S., and Kim, W. S. Inverse geometry problem of estimating the phase front motion of ice in a thermal storage system. Inverse Problems in Science and Engineering, 12(1), 1–15 (2004)

    Article  Google Scholar 

  10. Su, C. R. and Chen, C. K. Geometry estimation of the furnace inner wall by an inverse approach. International Journal of Heat and Mass Transfer, 50(19–20), 3767–3773 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yang, X. D. and Qiao, Z. D. Optimum aerodynamic design of transonic wing based on adjoint equations method (in Chinese). Acta Aeronautica et Astronautica Sinica, 24(1), 1–5 (2003)

    Google Scholar 

  12. Yang, X. D., Qiao, Z. D., and Zhu, B. Aerodynamic design method based on control theory and Navier-Stokes equations (in Chinese). Acta Aerodynamica Sinica, 23(1), 46–51 (2005)

    Google Scholar 

  13. Yang, Y. C. and Chang, W. J. Simultaneous inverse estimation for boundary heat and moisture fluxes of a double-layer annular cylinder with interface resistance. Appl. Math. Comput., 176(2), 594–608 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, W. L., Yang, Y. C., and Lee, H. L. Estimating the absorptivity in laser processing by inverse methodology. Appl. Math. Comput., 190(1), 712–721 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lee, H. L., Yang, Y. C., Chang, W. J., and Wu, T. S. Estimation of heat flux and thermal stresses in multilayer gun barrel with thermal contact resistance. Appl. Math. Comput., 209(2), 211–221 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Alifanov, O. M. and Artyukhin, E. A. Regularized numerical solution of nonlinear inverse heat-conduction problem. Journal of Engineering Physics, 29(1), 934–938 (1975)

    Article  Google Scholar 

  17. Zueco, J. and Alhama, F. Simultaneous inverse determination of temperature-dependent thermo-physical properties in fluids using the network simulation method. International Journal of Heat and Mass Transfer, 50(15–16), 3234–3243 (2007)

    Article  MATH  Google Scholar 

  18. Alifanov, O. M. Inverse Heat Transfer Problems, Springer-Verlag, New York (1994)

    MATH  Google Scholar 

  19. Alifanov, O. M. Application of the regularization principle to the formulation of approximate solution of inverse heat conduction problem. Journal of Engineering Physics, 23(6), 1566–1571 (1972)

    Article  Google Scholar 

  20. Lien, F. S., Chen, W. L., and Leschziner, M. A. A multiblock implementation of a non-orthogonal, collocated finite volume algorithm for complex turbulent flows. Interational Journal for Numerical Methods in Fluids, 23(6), 567–588 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-ching Yang  (杨俞青).

Additional information

Project supported by the National Science Council of Taiwan of China (No. NSC 97-2221-E-168-039)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Wl., Yang, Yc., Lee, Hl. et al. Inverse estimation for unknown fouling geometry on inner wall of forced-convection pipe. Appl. Math. Mech.-Engl. Ed. 32, 55–68 (2011). https://doi.org/10.1007/s10483-011-1393-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-011-1393-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation