Skip to main content
Log in

Variational principle for a special Cosserat rod

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we describe the nonlinear models of a rod in three-dimensional space based on the Cosserat theory. Using the pseudo-rigid body method and variational principle, we obtain the motion equations of a Cosserat rod including shear deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Cambridge University Press, New York (1994)

    Google Scholar 

  2. Faulkner, M. G. and Steigmann, D. J. Controllable deformations of elastic spatial rods. Acta Mechanica 101(1),31–43 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Steigmann, D. J. and Faulkner, M. G. Variational theory for spatial rods. Journal of Elasticity 33(1),1–26 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cohen, H. and Muncaster, R. G. Theory of Pseudo-rigid Bodies, Springer, Berlin (1984)

    Google Scholar 

  5. Papadopoulos, P. On a class of higher-order pseudo-rigid bodies. Mathematics and Mechanics of Solids 6(6),631–640 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Green, A. E., Naghdi, P. M., and Wenner, M. L. On the theory of rods I: derivations from the three-dimensional equations. Proc. Royal Soc. London A 337(1611),451–483 (1974)

    MATH  MathSciNet  Google Scholar 

  7. Green, A. E., Naghdi, P. M., and Wenner, M. L. On the theory of rods II: developments by direct approach. Proc. Royal Soc. London A 337(1611),485–507 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  8. Naghdi, P. M. and Rubin, M. B. Constrained theories of rods. J. Elast. 14(4),343–361 (1984)

    Article  MATH  Google Scholar 

  9. Rubin, M. B. An intrinsic formulation for nonlinear elastic rod. Int. J. Solids Struct. 34(31–32),4191–4212 (1997)

    Article  MATH  Google Scholar 

  10. Rubin, M. B. Numerical solution procedures for nonlinear elastic rods using the theory of a Cosserat point. Int. J. Solids Struct. 38(24–25),4395–4437 (2001)

    Article  MATH  Google Scholar 

  11. Zhang, H. W., Wang, H., Chen, B. S., and Xie, Z. Q. Parametric variational principle based elastic-plastic analysis of cosserat continuum. Acta Mechanica Solida Sinica 20(1),65–74 (2007)

    Google Scholar 

  12. Zhang, H. W., Wang, H., Chen, B. S., and Xie, Z. Q. Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle. Comput. Methods Appl. Mech. Engrg. 197(6–8),741–755 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Neff, P. A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. International Journal of Engineering Science 44(8–9),574–594 (2006)

    Article  MathSciNet  Google Scholar 

  14. Sansour, C. and Skatulla, S. A non-linear Cosserat continuum-based formulation and moving least square approximations in computations of size-scale effects in elasticity. Computational Materials Science 41(4),589–601 (2008)

    Article  Google Scholar 

  15. Sansour, C. and Skatulla, S. A strain gradient generalized continuum approach for modelling elastic scale effects. Comput. Methods Appl. Mech. Engrg. 198(15-16),1401–1412 (2009)

    Article  Google Scholar 

  16. Cao, D. Q., Liu, D., and Wang, C. Three-dimensional nonlinear dynamics of slender structures: Cosserat rod element approach. Int. J. Solids Struct. 43(3-4),760–783 (2006)

    Article  MATH  Google Scholar 

  17. Liu, D., Cao, D. Q., Rosing, R., Wang, C., and Richardson, A. Finite element formulation of slender structures with shear deformation based on the Cosserat theory. Int. J. Solids Struct. 44(24),7785–7802 (2007)

    Article  MATH  Google Scholar 

  18. Wang, C., Liu, D., Rosing, R., Richardson A., and de Masi, B. Construction of nonlinear dynamic MEMS component models using Cosserat theory. Analog Integrated Circuits and Signal Processing 40(2),117–130 (2004)

    Article  Google Scholar 

  19. Antman, S. S. Nonlinear Problems of Elasticity, Springer, New York (1995)

    MATH  Google Scholar 

  20. Sattinger, D. H. and Weaver, O. L. Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics, Springer-Verlag, New York (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-sheng Liu  (刘东生).

Additional information

Communicated by Li-qun CHEN

Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Ds., Wang, C.HT. Variational principle for a special Cosserat rod. Appl. Math. Mech.-Engl. Ed. 30, 1169–1176 (2009). https://doi.org/10.1007/s10483-009-0911-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-009-0911-y

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation