Thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an inclined plane

Abstract

This study is devoted to the investigation of thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an inclined isothermal plane. It is assumed that the reaction is exothermic under Arrhenius kinetics, neglecting the consumption of the material. The governing non-linear equations for conservation of momentum and energy are obtained and solved by using a new computational approach based on a special type of Hermite-Padé approximation technique implemented in MAPLE. This semi-numerical scheme offers some advantages over solutions obtained with traditional methods such as finite differences, spectral method, and shooting method. It reveals the analytical structure of the solution function. Important properties of overall flow structure including velocity field, temperature field, thermal criticality, and bifurcations are discussed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Szeri, A. Z. and Rajagopal, K. R. Flow of a non-Newtonian fluid between heated parallel plates. International Journal of Non-Linear Mechanics 20, 91–101 (1985)

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    Siddiqui, A. M., Mahomood, R., and Ghori, Q. K. Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane. Chaos, Solitons & Fractals 35(1), 140–147 (2008)

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    Cebeci, T. and Bradshaw, P. Physical and computational aspects of convective heat transfer, Springer-Verlag, New York (1984)

    MATH  Google Scholar 

  4. [4]

    Makinde, O. D. Irreversibility analysis for gravity driven non-Newtonian liquid film along an inclined isothermal plate. Physica Scripta 74, 642–645 (2006)

    Article  Google Scholar 

  5. [5]

    Weinstein, S. J., Ruschak, K.J., and Ng, K. C. Developing flow of a power-law liquid film on an inclined plane. Physics of Fluids 15(10) 2973–2986 (2003)

    Article  MathSciNet  Google Scholar 

  6. [6]

    Hayat, T., Asif Farooq, M., Javed T., and Sajid, M. Partial slips effects on the flow and heat transfer characteristics in a third grade fluid. Nonlinear Analysis: Real World Applications 10(2), 745–755 (2009)

    Article  Google Scholar 

  7. [7]

    Makinde, O. D. Laminar falling liquid film with variable viscosity along an inclined heated plate. Applied Mathematics and Computation 175, 80–88 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  8. [8]

    Massoudi, M. and Christie, I. Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid in a pipe. International Journal of Non-Linear Mechanics 30, 687–699 (1995)

    MATH  Article  Google Scholar 

  9. [9]

    Frank-Kamenetskii, D. A. Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York (1969)

    Google Scholar 

  10. [10]

    Bowes, P. C. Self-Heating: Evaluating and Controlling the Hazard, Elsevier, Amsterdam (1984)

    Google Scholar 

  11. [11]

    Hunter, D. L. and Baker, G. A. Methods of series analysis III: integral approximant methods. Physical Review B 19, 3808–3821 (1979)

    Article  Google Scholar 

  12. [12]

    Landau, L. D. and Lifshitz, E. M. Fluid Mechanics (2nd ed.), Pergamon Press, New York (1989)

    Google Scholar 

  13. [13]

    Bender, C. and Orszag, S. A. Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill (1978)

  14. [14]

    Guttamann, A. J. Asymptotic analysis of power-series expansions. Phase Transitions and Critical Phenomena (eds. Domb, C. and Lebowitz, J. K.), Academic Press, New York, 1–234 (1989)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oluwole Daniel Makinde.

Additional information

Project supported by the National Research Foundation of South Africa Thuthuka Programme

(Communicated by Zhe-wei ZHOU)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Makinde, O.D. Thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an inclined plane. Appl. Math. Mech.-Engl. Ed. 30, 373–380 (2009). https://doi.org/10.1007/s10483-009-0311-6

Download citation

Key words

  • isothermal inclined plate
  • third-grade fluid
  • Hermite-Padé approximation
  • thermal criticality

Chinese Library Classification

  • O351.1

2000 Mathematics Subject Classification

  • 80A20