Skip to main content
Log in

Preliminary group classification of quasilinear third-order evolution equations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract low-dimensional Lie algebras. We show that there are three equations admitting simple Lie algebras of dimension three. All non-equivalent equations admitting simple Lie algebras are nothing but these three. Furthermore, we also show that there exist two, five, twenty-nine and twenty-six nonequivalent third-order nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bluman, G. and Anco, S. C. Symmetry and Integration Methods for Differential Equations, Springer, New York (2002)

    MATH  Google Scholar 

  2. Bluman, G. W. and Kumei, S. Symmetries and Differential Equations, Springer, New York (1989)

    MATH  Google Scholar 

  3. Fushchych, W. I., Shtelen, W. M., and Serov, N. I. Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics (transl. in English), Kluwer, Dordrecht (1993)

    Google Scholar 

  4. Fushchych, W. I. and Zhdanov, R. Z. Symmetries and Exact Solutions of Nonlinear Dirac Equations, Naukova Ukraina Publishing, Kyiv (1997)

    Google Scholar 

  5. Ibragimov, N. H. Transformation Groups Applied to Mathematical Physics, D. Reidel Publishing Co., Dordrecht (1985)

    MATH  Google Scholar 

  6. CRC Handbook of Lie Group Analysis of Differential Equations — Symmetries, Exact Solutions and Conservation Laws (ed. Ibragimov, N. H.), Vol. 1, CRC Press, Boca Raton, Florida (1994)

    Google Scholar 

  7. Ibragimov, N. H. Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley, New York (1999)

    MATH  Google Scholar 

  8. Olver, P. J. Application of Lie Groups to Differential Equations, Springer-Verlag, New York (1986)

    Google Scholar 

  9. Ovsiannikov, L. V. Group Analysis of Differential Equations, Academic Press, New York (1982)

    MATH  Google Scholar 

  10. Stephani, H. Differential Equation: Their Solution Using Symmetries, Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  11. Lie, S. and Engel, F. Theorie der Transformationsgruppen, Bd. 3, Teubner, Leipzig (1888, 1890, 1893)

  12. Lie, S. On integration of a class of linear partial differential equations by means of definite integrals. CRC Handbook of Lie Group Analysis of Differential Equations, (Transl. Ibragimov, N. H. of Arch. for Math., Bd. VI, Heft 3, 328–368, Kristiania 1881), Vol. 2 CRC Press, Boca Raton, Florida, 473–508 (1994)

    Google Scholar 

  13. Gazeau, J. P. and Winternitza, P. Symmetries of variable coefficient Korteweg-de Vries equations. J. Math. Phys. 33, 4087–4102 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Güngör, F., Lahno, V. I., and Zhdanov, R. Z. Symmetry classification of KdV-type nonlinear evolution equations. J. Math. Phys. 45, 2280–2313 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Basarab-Horwath, P., Lahno, V., and Zhdanov, R. The structure of Lie algebras and the classification problem for partial differential equations. Acta Applicandae Mathematicae 69, 43–94 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bluman, G., Temuerchaolu, and Sahadevan, R. Local and nonlocal symmetries for nonlinear telegraph equation. J. Math. Phys. 46, 023505 (2005)

  17. Qu, Changzheng. Allowed transformations and symmetry class of variable-coefficient Burgers equations. IMA J. Appl. Math. 54(3), 203–225 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huang, Dingjiang and Ivanova, N. M. Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations. J. Math. Phys. 48, 073507 (2007)

    Article  MathSciNet  Google Scholar 

  19. Zhdanov, R. Z. and Lahno, V. I. Group classification of heat conductivity equations with a nonlinear source. J. Phys. A: Math. Gen. 32, 7405–7418 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lahno, V. I. and Zhdanov, R. Z. Group classification of nonlinear wave equations. J. Math. Phys. 46, 053301 (2005)

    Google Scholar 

  21. Lahno, V. I., Zhdanov, R. Z., and Magda, O. Group classification and exact solutions of nonlinear wave equations. Acta Appl. Math. 91, 253–313 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhdanov, R. Z. and Lahno, V. I. Group classification of the general evolution equation: local and quasilocal symmetries. SIGMA 1, 009 (2005)

    MathSciNet  Google Scholar 

  23. Huang, Dingjiang. Nonlinear Wave, Geometical Integrability and Group Classification (in Chinese), Ph. D. dissertation, Dalian University of Technology, 135–158 (2007)

  24. Basarab-Horwath, P., Gungor, F., and Lahno, V. Symmetry classification of third-order nonlinear evolution equations. arXiv nlin.SI-0802.0367v1 (2008)

  25. Gagnon, L. and Winternitz, P. Symmetry classes of variable coefficient nonlinear Schrödinger equations. J. Phys. A: Math. Gen. 26, 7061–7076 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gomez-Ullate, D., Lafortune, S., and Winternitz, P. Symmetries of discrete dynamical systems involving two species. J. Math. Phys. 40, 2782–2804 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gungor, F. and Winternitz, P. Generalized Kadomtsev-Petviashvili equation with an infinite dimensional symmetry algebra. J. Math. Anal. Appl. 276, 314–328 (2002)

    Article  MathSciNet  Google Scholar 

  28. Levi, D. and Winternitz, P. Symmetries of discrete dynamical systems. J. Math. Phys. 37, 5551–5576 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lafortune, S., Tremblay, S., and Winternitz, P. Symmetry classification of diatomic molecular chains. J. Math. Phys. 42, 5341–5357 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhdanov, R., Fushchych, W., and Marko, P. New scale-invariant nonlinear differential equations for a complex scalar field. Physica D 95, 158–162 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhdanov, R. and Roman, O. On preliminary symmetry classification of nonlinear Schrödinger equation with some applications of Doebner-Goldin models. Rep. Math. Phys. 45, 273–291 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lie, S. Gesammelte Abhandlungen, Vol. 5, Teubner, Leipzig, 767–773 (1924)

    Google Scholar 

  33. Lie, S. Gesammelte Abhandlungen, Vol. 6, Teubner, Leipzig, 1–94 (1927) DOI: 10.1007/s10483-009-0303-z

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-qing Zhang  (张鸿庆).

Additional information

(Contributed by Hong-qing ZHANG)

Project supported by the National Key Basic Research Project of China (973 Program) (No. 2004CB318000)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Dj., Zhang, Hq. Preliminary group classification of quasilinear third-order evolution equations. Appl. Math. Mech.-Engl. Ed. 30, 275–292 (2009). https://doi.org/10.1007/s10483-009-0302-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-009-0302-z

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation