Skip to main content
Log in

A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we consider numerical simulation of wave propagation in fluid-saturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: low-frequency range[J]. Acoustical Society of America, 1956a, 28(2):168–178.

    Article  MathSciNet  Google Scholar 

  2. Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: higher-frequency range[J]. Acoustical Society of America, 1956b, 28(2):179–191.

    Article  MathSciNet  Google Scholar 

  3. Dai N, Vafidis A, Kanasewich E R. Wave propagation in heterogeneous, porous media: a velocitystress, finite-difference method[J]. Geophysics, 1995, 60(2):327–340.

    Article  Google Scholar 

  4. Prevost J H. Wave propagation in fluid-saturated porous media: an efficient finite element procedure[J]. Soil Dynamics and Earthquake Engineering, 1985, 4(4):183–202.

    Article  Google Scholar 

  5. Narasimhan T N, Witherspoon P A. An integrated finite difference method for analyzing fluid flow in porous media[J]. Water Resources Research, 1976, 12(1):57–64.

    Article  Google Scholar 

  6. Pedercini M, Patera A T, Cruz M E. Variational bound finite element methods for three-dimensional creeping porous media and sedimentation flows[J]. International Journal for Numerical Methods in Fluids, 1998, 26(2):145–175.

    Article  MATH  Google Scholar 

  7. Shao Xiumin, Lan Zhiling. Finite element method for the equation of waves in fluid-saturated porous media[J]. Chinese Journal of Geophysics, 2000, 43(2):264–278 (in Chinese).

    Google Scholar 

  8. Sun Weitao, Yang Huizhu. Elastic wavefield calculation for heterogeneous anisotropic porous media using the 3D irregular-grid finite-difference[J]. ACTA Mechanica Solida Sinica, 2003, 16(4):283–299.

    Google Scholar 

  9. Hong T K, Kennett B L N. A wavelet-based method for simulation of two-dimensional elastic wave propagation[J]. Geophysical Journal International, 2002, 150(3):610–638.

    Article  Google Scholar 

  10. Mustafa M T, Siddiqui A A. Wavelet optimized finite difference method with non-static regridding[J]. Applied Mathematics and Computation, 2007, 18(6):203–211.

    MathSciNet  Google Scholar 

  11. Xiang J W, Chen X F, He Z J, Dong H B. The construction of 1D wavelet finite elements for structural analysis[J]. Computational Mechanics, 2007, 40(2):325–339.

    Article  MathSciNet  Google Scholar 

  12. Zhang Xinming, Liu Kean, Liu Jiaqi. A wavelet finite element method for the 2-D wave equation in fluid-saturated porous media[J]. Chinese Journal of Geophysics, 2005, 48(5):1156–1166 (in Chinese).

    Google Scholar 

  13. Liao Zhenpeng, Wong H L, Yang Baipo, Yuan Yifan. A transmitting boundary for transient wave analyses[J]. Scientia Sinica (A), 1984, 27(10):1063–1076.

    MATH  Google Scholar 

  14. Liao Zhenpeng, Wong H L. A transmitting boundary for the numerical simulation of elastic wave propagation[J]. Soil Dynamics and Earthquake Engineering, 1984, 3(4):174–183.

    Article  Google Scholar 

  15. Beylkin G. On the representation of operators in bases of compactly supported wavelets[J]. SIAM Numerical Analysis, 1992, 29(1):1716–1740.

    Article  MATH  MathSciNet  Google Scholar 

  16. Hajji M A, Melkonian S, Vaillancourt V. Representation of differential opterator in wavelet basis[J]. Computers and Mathematics with Applications, 2004, 47(6):1011–1033.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kelly K R, Ward R W, Treitel S et al. Synthetic seismograms: a finite-difference approach[J]. Geophysies, 1976, 41(1):2–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying He  (贺英).

Additional information

(Communicated by GUO Xing-ming)

Project supported by the National Natural Science Foundation of China (No. 40774056) and Program of Excellent Team in Harbin Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Han, B. A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media. Appl. Math. Mech.-Engl. Ed. 29, 1495–1504 (2008). https://doi.org/10.1007/s10483-008-1110-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-1110-y

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation