Skip to main content
Log in

Computation of compressible flows with high density ratio and pressure ratio

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The WENO method, RKDG method, RKDG method with original ghost fluid method, and RKDG method with modified ghost fluid method are applied to singlemedium and two-medium air-air, air-liquid compressible flows with high density and pressure ratios. We also provide a numerical comparison and analysis for the above methods. Numerical results show that, compared with the other methods, the RKDG method with modified ghost fluid method can obtain high resolution results and the correct position of the shock, and the computed solutions are converged to the physical solutions as the mesh is refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation[R]. Los Alamos Scienfic Laboratory Report LA-UR-73-479, 1973.

  2. LeSaint P, Raviart P A. On a finite element methods for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations[M]. de Boor C (ed). New York: Academic Press, 1974, 89–145.

    Google Scholar 

  3. Cockburn B, Gremaud P A. A prior error estimates for numerical methods for scalar conservation laws. Part I: the general approach[J]. Math Comp, 1996, 65(214):533–573.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn B, Shu C W. TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws II: general framework[J]. Math Comp, 1989, 52(186):411–435.

    Article  MATH  MathSciNet  Google Scholar 

  5. Cockburn B, Lin S Y, Shu C W. TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws III: one dimensional systems[J]. J Comput Phys, 1989, 84(1):90–113.

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn B, Hou S, Shu C W. TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws IV: the multidimensional case[J]. J Comput Math Comp, 1990, 54(190):541–581.

    MathSciNet  Google Scholar 

  7. Cockburn B, Shu C W. TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws V: multidimensional systems[J]. J Comput Phys, 1998, 141(2):199–224.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundary[J]. J Comput Phys, 1981, 39(1):201–225.

    Article  MATH  Google Scholar 

  9. Mulder W, Osher S, Sethian J A. Computing interface motion in compressible gas dynamics[J]. J Comput Phys, 1992, 100(2):209–228.

    Article  MATH  MathSciNet  Google Scholar 

  10. Marshall G. A front tracking method for one-dimensional moving boundary problems[J]. SIAM J Sci Compt, 1986, 7(1):252–263.

    Article  MATH  MathSciNet  Google Scholar 

  11. Fedkiw R P, Aslam T, Merriman B, Osher S. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[J]. J Comput Phys, 1999, 152(2):457–492.

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock-impacting on material interface[ J]. J Comput Phys, 2003, 190(2):651–681.

    Article  MATH  Google Scholar 

  13. Chen R S, Yu X J. A high order accurate RKDG finite element method for one dimensional compressible multicomponent Euler equation[J]. J Comput Phys, 2006, 23(1):43–49 (in Chinese).

    MATH  MathSciNet  Google Scholar 

  14. Tang H Z, Liu T G. A note on the conservative schemes for the Euler equations[J]. J Comput Phys, 2006, 218(2):451–459.

    Article  MATH  Google Scholar 

  15. Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces[M]. Springer, 2003.

  16. Liu R X, Liu X P, Zhang L, Wang Z F. Tracking and rescontruction methods for movinginterface[J]. Appl Math Mech-Engl Ed, 2004, 25(3):307–321. DOI 10.1007/BF02437334

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-san Chen  (陈荣三).

Additional information

Communicated by ZHOU Zhe-wei

Project supported by the National Natural Science Foundation of China (No. 10671120)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Rs. Computation of compressible flows with high density ratio and pressure ratio. Appl. Math. Mech.-Engl. Ed. 29, 673–682 (2008). https://doi.org/10.1007/s10483-008-0511-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-0511-y

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation