Skip to main content
Log in

Research progress on thermal protection materials and structures of hypersonic vehicles

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Hypersonic vehicles represent future trends of military equipments and play an important role in future war. Thermal protection materials and structures, which relate to the safety of hypersonic vehicles, are one of the most key techniques in design and manufacture of hypersonic vehicles. Among these materials and structures, such as metallic temperature protection structure, the temperature ceramics and carbon/carbon composites are usually adopted in design. The recent progresses of research and application of ultra-high temperature materials in preparation, oxidation resistance, mechanical and physical characterization are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Moses Paul L, Rausch Vincent L, Nguyen Luat T, Hill Jeryl R. NASA hypersonic flight demonstrators-overview, status and future plans[J]. Acta Astronautica, 2004, 55(3/4):619–630.

    Google Scholar 

  2. Jay Miller. The X-planes X-1 to X-29[J]. Specialty Sress, Marine on St Croix, MN, 1983, (4):10–13.

  3. Bohon H L, Shideler J L. Radioactive metallic thermal protection systems: a status report[J]. Journal of Spacecraft and Rockets, 1977, 12(10):626–631.

    Article  Google Scholar 

  4. Shideler J L, Kelly H N, Avery D E. Multiwall TPS-an emerging concept[J]. Journal of Spacecraft and Rockets, 1982, 19(4):7–8.

    Google Scholar 

  5. Blair W, Meaney J E, Rosenthal H A. Fabrication of prepackaged super alloy honeycomb thermal protection system panels[R]. NASA-TP-3257, 1993, (3):5–7.

  6. Gorton M P, Shideler J L, Web G L. Static and aero thermal tests of a super alloy honeycomb prepackaged thermal protection system[R]. NASA-TP-3257, 1993, (3):2–3.

  7. Cunnington G R, Zierman C A. Performance of multi-layer insulation systems for temperatures to 700K[R]. NASA CR-907, 1967210.

  8. Keller K, Hoffmann M, Zorner W, Blumenberg J. Application of high temperature multilayer insulations[J]. Acta Astronautica, 1992, 26(6):451–458.

    Article  Google Scholar 

  9. Kamran Daryabeigi. Thermal analysis and design of multi-layer insulation for reentry aerodynamic heating[R]. AIAA 2001-2834.

  10. Kamran Daryabeigi. Effective thermal conductivity of high temperature insulations for reusable launch vehicles[R]. NASA TM-1999-20892.

  11. Alan D. Sullins, Kam ran Daryabeigi. Effective thermal conductivity of high porosity open cell nickel foam[R]. AIAA 2001-2819.

  12. Kamran Daryabeigi. Heat transfer in high temperature fibrous insulation[R]. AIAA 2002-3332.

  13. Kamran Daryabeigi. Analysis and testing of high temperature fibrous insulation for reusable launch vehicles[R]. AIAA 99-1044, 1999.

  14. Blosser M L. Development of metallic thermal protection systems for the reusable launch vehicle[R]. NASA Technical Memorandum 110 296, 1996.

  15. Yao Caogen, Lü Hongjun, Jia Xinchao, Zhang Xuhu, Wang Qi. Development of metallic thermal protection system[J]. Aerospace Materials & Technology, 2005, 35(2):10–13 (in Chinese).

    Google Scholar 

  16. Xia Deshun. Review of metallic thermal protection system for the reusable launch vehicle[J]. Missiles and Space Vehicles, 2002, 256(2):21–26 (in Chinese).

    Google Scholar 

  17. Guan Chunlong, Li Yao, He Xiaodong. Research status of structures and materials for reusable TPS[J]. Aerospace Materials & Technology, 2003, 33(6):7–11 (in Chinese).

    Google Scholar 

  18. Cao Yi, Cheng Haifeng, Xiao Jiayu, Li Yongqing. An introduction to american metallic TPS research work[J]. Aerospace Materials & Technology, 2003, 33(3):9–12 (in Chinese).

    Google Scholar 

  19. Han Jiecai, Chen Guiqing, Meng Songhe, Li Xiaohai. New-typed ARMOR thermal protection systems[J]. Journal of Astronautics, 2004, 25(3):350–353 (in Chinese).

    Google Scholar 

  20. Zhao Ying. Development of launch vehicles in 2000[J]. Missiles and Space Vehicles, 2001, 249(1):16–22 (in Chinese).

    Google Scholar 

  21. Myers D E, Martin C J, Blosser M L. Parametric weight comparison of current and proposed thermal protection system (TPS) concepts[C]. In: 33rd Thermophysics Conference, AIAA 93-3459, Norfolk, Virginia, 1999.

  22. Cowart K, Olds J. Integrating aeroheating and TPS into conceptual RLV design[C]. In: 9th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, Virginia, 1999.

  23. Brewer WD, Bird Keith, Wallace Terryl, Sankaran S A. Alloys and coating development for metallic TPS for reusable launch vehicles[C]. In: 2000 National Space Missile Materials Symposium, San Diego, California, February 28–March 2, 2000.

  24. Buckley J D, Ediel D D. Carbon-carbon materials and composites[M]. New York: Noyes Publications, 1993.

    Google Scholar 

  25. Savage G. Carbon-carbon composites[M]. London: Chapman & Hall, 1993, 198–209.

    Google Scholar 

  26. Walker Jr P L. Carbon em dash an old but new material[J]. Carbon, 1972, 10(4):369–382.

  27. Lavruquere S, Elanchard H, Pailler R, et al. Enhancement of the oxidation resistance of interfacial area in C/C composites. Part II. Oxidation resistance of B-C, Si-B-C and Si-C coated carbon preforms densified with carbon[J]. Journal of the European Ceramic Society, 2002, 22(7):1011–1021.

    Article  Google Scholar 

  28. Cui Hong, Su Junming, Li Ruizhen, Li Hejun, Kang Mokuang. On improving anti ablation property of multi matrix C/C to withstand 3700K[J]. Journal of Northwestern Polytechnical University, 2000, 18(4):669–673 (in Chinese).

    Google Scholar 

  29. Yan Guishen, Wang Jun, Su Junming, Li Hejun, Hao Zhibiao. Influence of refractory carbides synthesized in the modification of matrix on the oxidation resistant performance of C/C composite[J]. Carbon, 2003, 114(2):3–6 (in Chinese).

    Google Scholar 

  30. Zhu Xiaoqi, Yang Zheng, Kang Mokuang, Zhang Haitau. Effect of matrix modification on the oxidation resistance of carbon/carbon composites[J]. Acta Materiae Compositae Sinica, 1994, 11(2):107–111 (in Chinese).

    Google Scholar 

  31. Luo Ruiying, Li Dongsheng. A new way of enhancement of oxidation resistant properties for carbon/carbon composites[J]. Journal of Astronautics, 1998, 19(1):95–98 (in Chinese).

    MathSciNet  Google Scholar 

  32. Park Soo-jin, Soe Min-kang. The effects of MoSi2 on the oxidation behavior of carbon/carbon composites[J]. Carbon, 2001, 39:1229–1235.

    Article  Google Scholar 

  33. Jashi A, Lee J S. Coating with particulate dispersions for high temperature oxidation protection of carbon and C-C composites[J]. Composites A, 1997, 28(2): 181–189.

    Article  Google Scholar 

  34. Cheng Laifei, Zhang Litong, Han Jintan. Preparation of Si-Mo oxidation protection coating for carbon-carbon composites[J]. High Technology Letters, 1996, 6(4):17–20 (in Chinese).

    Google Scholar 

  35. Cheng Laifei, Zhang Litong, Xu Yongdong, Zhou Wancheng. Structure of the oxide film on the siw coating for C/C composites prepared by liquid reaction formation method[J]. Journal of the Chinese Ceramic Society, 1997, 25(5):537–541.

    Google Scholar 

  36. Zeng Xierong, Li Hejun, Zhang Jianguo, Hou Yanhong, Yang Zheng. Effect of microstructure and component on oxidation resistance of MoSi2-SiC multilayer ceramic coating[J]. Acta Materiae Compositae Sinica, 2000, 17(2):42–45 (in Chinese).

    Google Scholar 

  37. Huang Jianfeng, Zeng Xierong, Li Hejun, et al. Al2O3-mullite-SiC-Al4 SiC4 multi-composition coating for carbon/carbon composites[J]. Materials Letters, 2004, 58(21):2627–2630.

    Article  Google Scholar 

  38. Huang Jianfeng, Zeng Xierong, Li Hejun, et al. ZrO2-SiO2 gradient multi-layer oxidation protective coating for SiC coated carbon/carbon composites[J]. Surface & Coating Technology, 2005, 190(2/3):255–259.

    Article  Google Scholar 

  39. Cairo C A A, Graca M L A, Silva C R M, et al. Functionally gradient ceramic coating for carbon/carbon anti-oxidation protection[J]. Journal of European Ceramic Society, 2001, 21(3):325–329.

    Article  Google Scholar 

  40. Buchanan F J, Little J A. Particulate containing glass sealants for carbon-carbon composites[J]. Carbon, 1996, 31(4):649–654.

    Google Scholar 

  41. Strife J R. Ceramic coating for carbon-carbon composites[J]. Ceramic Bulletin, 1988, 67(2):369–374.

    Google Scholar 

  42. Wu Tsung-ming, Wu yung-rong. Methodology in exploring the oxidation behavior of carboncarbon composites[J]. Journal of Materials Science, 1994, 29(5):1260–1264.

    Article  Google Scholar 

  43. Westwood M E. Oxidation protection for carbon fiber composites[J]. Journal of Materials Science, 1996, 31(6):1389–1397.

    Article  Google Scholar 

  44. Eckel A J, Bradt R C. Thermal expansion of laminated, woven, continuous ceramic fiber/chemical-vapor-infiltrated silicon carbide matrix composites[J]. Journal of American Ceramic Society, 1990, 73(5):1333–1338.

    Article  Google Scholar 

  45. Rudy E. Compendium of phase diagram data: ternary phase equilibria in transition metal-boron-carbon-silicon systems, part 5[M]. Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, 1969.

    Google Scholar 

  46. Kaufman L, Clougherty E V. Investigation of boride compounds for very high temperature applications[R]. RTD-TRD-N63-4096, Part III, Cambridge, MA: ManLabs Inc, March 1966.

    Google Scholar 

  47. Clougherty E V, Kalish D, Peters E T. Research and development of refractory oxidaton resistant diborides[R]. AFML-TR-68-190, Cambridge, MA: ManLabs Inc, 1968.

    Google Scholar 

  48. Kaufman L, Nesor H. Stability characterization of refractory materials under high velocity atmospheric flight conditions[R]. Part III, Vol III, AFML-TR-69-84, Cambridge, MA: ManLabs Inc, 1970.

    Google Scholar 

  49. Mcclaine L A. Thermodynamic and kinetic studies for a refractory materials program[R]. Report ASD/TDR/62/204, Part I, USA:Jan 1, 1962.

  50. Berkowitz-Mattuck J B. Kinetics of oxidation of refractory metals and alloys at 1000–2000°C[R]. Technical Report ASDTDR-62-203, AFML, WPAFB, OH, 1962/1963.

  51. Peter T B, Shaffer. An Oxidation resistant boride composition[J]. American Ceramic Society Bulletin, 1962, 41(2):96–99.

    Google Scholar 

  52. Pastor H, Meyer R. Study of the effect of additions of silicides of some group IV-VI transition metals on sintering and high-temperature oxidation resistance of titanium and zirconium borides[J]. Revue Internationale des Hautes Tempe ratures et des Refractaires, 1974, 11(1):41–45.

    Google Scholar 

  53. Lavrenko V A, Panasyuk A D, Protsenko T G, et al. High-temperature reactions of materials of the ZrB//2-ZrSi//2 system with oxygen[J]. Soviet Powder Metallurgy and Metal, 1982, 21(6):471–473.

    Article  Google Scholar 

  54. Mcclaine L A. Thermodynamic,Kinetic. Studies for a refractory materials program[R]. Report ASD/TDR/62/204, Part II, USA:April, 1963.

  55. Brown F H. Stability of titanium diboride and zirconium diboride in air, oxygen, and nitrogen progress report[R]. Progress Report No 20-252, Jet Propulsion Laboratory, Pasadena, CA, 25 Feb 1955.

    Google Scholar 

  56. Kuriakose A K, Margrave J L. The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures[J]. J Electrochem Soc, 1964, 111(7):827–831.

    Article  Google Scholar 

  57. Mcclaine L A. Thermodynamic and kinetic studies for a refractory materials program[R]. Report ASD/TDR/62/204, Part III, USA:Jan, 1964.

  58. Clougherty E V, Peters E T, Kalish D. Diboride materials[J]. Candidates for Aerospace Applications, 1969, 35(15):297–308.

    Google Scholar 

  59. Kaufman L. Boride composite—a new generation of nose cap and leading edge materials for reuseable lifting re-entry systems[C]. In: Proceedings of AIAA Advanced Space Transportation Meeting, AIAA Paper 70-278, NY, 1970.

  60. Buckley J D. Static, subsonic, and supersonic oxidation of JT graphite co mposites[R]. Technical Report NASA TN D-4231, NASA, Wash D C, Oct. 1967.

  61. Rao G A Rama, Venugopal V. Kinetics and mechanism of the oxidation of ZrC[J]. Journal of Alloys and Compounds, 1994, 206(2):237–242.

    Article  Google Scholar 

  62. Fenter J R. Refractory diborides as engineering materials[J]. SAMPE Quart, 1971, 2(3):1–15.

    Google Scholar 

  63. Levinea Stanley R, Opilab Elizabeth J, Halbigc Michael C, Kisera James D, Singhd Mrityunjay, Salema Jonathan A. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. Journal of the European Ceramic Society, 2002, 22(14/15):2757–2767.

    Article  Google Scholar 

  64. Monteverde. The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures[J]. Corrosion Science, 2005, 47(8): 2020–2033.

    Article  Google Scholar 

  65. Monteverde. Progress in the fabrication of ultra-high-temperature ceramics:’in situ’ synthesis, microstructure and properties of a reactive hot-pressed HfB2-SiC composite[J]. Composites Science and Technology, 2005, 65(11/12):1869–1879.

    Article  Google Scholar 

  66. Bertrand S, Droillard C, Pailler R, et al. TEM structure of (PyC/SiC)n mutilayered interphases in SiC/ SiC composites[J]. Journal of the European Ceramic Scoiety, 2002, 20(1):1–13.

    Article  Google Scholar 

  67. Boitier G, Vicens J, Chermant J L. Understanding the creep behavior of a 2.5D Cf-SiC composite: morphology and microstructure of the as-received material[J]. Materials Science and Engineering, 2000, 279(1/2):73–80.

    Google Scholar 

  68. Boitier G, Chermant J L, Vicens J. Understanding the creep behavior of a 2.5D Cf-SiC composite II: experimental specifications and macroscopic mechanical creep responses[J]. Materials Science and Engineering, 2000, 289(1):265–275.

    Article  Google Scholar 

  69. Dalmaz A, Ducretd P, Guerjouma R E, et al. Elastic moduli of a 2.5D Cf/SiC composite[J]. Experimental and Theoretical Estimates Composites Science and Technology, 2000, 60(6):913–925.

    Article  Google Scholar 

  70. Dalmaz A, Ducretd P, Rouby D, et al. Mechanical behavior and damage development during cyclic fatigue at high-temperature of a 2.5D C/SiC composite[J]. Composites Science and Technology, 1998, 58(5):693–699.

    Article  Google Scholar 

  71. Halbig M C, Brewer D N, Eckel A J, et al. Stressed oxidation of C/SiC composites[R]. NASA/TM 219972107457, New York: NASA, 1997.

    Google Scholar 

  72. Halbig M C, Brewer D N, Eckel A J. Degradation of continuous fiber ceramic matrix composites under constant loaded conditions[R]. TM 220002209681, New York: NASA, 2000.

    Google Scholar 

  73. James M S, Larry P Z. Performance of four ceramic matrix composite divergent flap inserts following ground testing on an F110 turbofan engine[J]. Journal of the American Ceramic Society, 2000, 83(7):1727–1738.

    Google Scholar 

  74. Kiyoshi S, Hiroki M, Osamu F, et al. Developing interfacial carbon-boron-silicon coatings for silicon nitride-fiber reinforced composites for improved oxidation resistance[J]. Journal of the American Ceramic Society, 2002, 85(7):1815–1822.

    Google Scholar 

  75. Schulte J F, Schmidt J, Tamme R, et al. Oxidation behaviour of C/C-SiC coated with SiC-B4C-SiC cordierite oxidation protection system[J]. Materials Science and Engineering A, 2004, 386(1/2):428–434.

    Google Scholar 

  76. Zhang Litong, Cheng Laifei, Xu Yongdong. Progress in research work of new CMC-SiC[J]. Aeronautical Manufacturing Technology, 2003, (1):24–32 (in Chinese).

  77. Zhang Litong, Cheng Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2):1–6 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ya-zheng  (杨亚政).

Additional information

Communicated by MENG Qing-guo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Yz., Yang, Jl. & Fang, Dn. Research progress on thermal protection materials and structures of hypersonic vehicles. Appl. Math. Mech.-Engl. Ed. 29, 51–60 (2008). https://doi.org/10.1007/s10483-008-0107-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-0107-1

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation