Abstract
The current genus Rhodopirellula consists of marine bacteria which belong to the family Pirellulaceae of the phylum Planctomycetota. Members of the genus Rhodopirellula are aerobic, mesophiles and chemoheterotrophs. The here conducted analysis built on 16S rRNA gene sequence and multi-locus sequence analysis based phylogenomic trees suggested that the genus is subdivided into four clades. Existing Rhodopirellula species were studied extensively based on phenotypic, genomic and chemotaxonomic parameters. The heterogeneity was further confirmed by overall genome-related indices (OGRI) including digital DNA–DNA hybridization (dDDH), average nucleotide identity (ANI), average amino acid identity (AAI), and percentage of conserved proteins (POCP). AAI and POCP values between the clades of the genus Rhodopirellula were 62.2–69.6% and 49.5–62.5%, respectively. Comparative genomic approaches like pan-genome analysis and conserved signature indels (CSIs) also support the division of the clades. The genomic incoherence of the members of the genus is further supported by variations in phenotypic characteristics. Thus, with the here applied integrated comparative genomic and polyphasic approaches, we propose the reclassification of the genus Rhodopirellula to three new genera: Aporhodopirellula gen. nov., Allorhodopirellula gen. nov., and Neorhodopirellula gen. nov.
Similar content being viewed by others
Change history
15 March 2023
A Correction to this paper has been published: https://doi.org/10.1007/s10482-023-01821-4
Abbreviations
- dDDH:
-
Digital DNA–DNA hybridization
- gANI:
-
Genomic average nucleotide identity
- AAI:
-
Average amino acid identity
- POCP:
-
Percentage of conserved proteins
- NCBI:
-
National Centre for Biotechnology Information
- BLAST:
-
Basic Local Alignment Search Tool
- JGI:
-
Joint Genome Institute
- MUSCLE:
-
MUltiple Sequence Comparison by Log-Expectation
- MEGA:
-
Molecular Evolutionary Genetics Analysis
- UBCG:
-
Up-to-date Bacterial Core Gene set
- BPGA:
-
Bacterial pangenome analysis
- MLSA:
-
Multi-locus sequence analysis
- DSMZ:
-
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
- JCM:
-
Japan Collection of Microorganisms-RIKEN BioResource Center
- NBRC:
-
NITE Biological Resource Center
- LMG:
-
Laboratorium voor Microbiologie
- CECT:
-
Colección Española de Cultivos Tipo
- ITOL:
-
Interactive Tree Of Life
- RAxML:
-
Randomized Axelerated Maximum Likelihood
References
Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P (2016) Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst Appl Microbiol 39:527–533. https://doi.org/10.1016/j.syapm.2016.09.004
Auch AF, Klenk HP, Göker M (2012) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2:142–148. https://doi.org/10.4056/sigs.541628
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75
Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D (2020) A genus definition for Bacteria and Archaea based on a standard genome relatedness index. mBio 11:e02475–19. https://doi.org/10.1128/mBio.02475-19
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:W29–W35. https://doi.org/10.1093/nar/gkab335
Boedeker C, Schüler M, Reintjes G, Jeske O, van Teeseling MC, Jogler M, Rast P, Borchert D, Devos DP, Kucklick M, Schaffer M, Kolter R, van Niftrik L, Engelmann S, Amann R, Rohde M, Engelhardt H, Jogler C (2017) Determining the bacterial cell biology of Planctomycetes. Nat Commun 8:14853. https://doi.org/10.1038/ncomms14853
Bondoso J, Harder J, Lage OM (2013) rpoB gene as a novel molecular marker to infer phylogeny in Planctomycetales. Antonie Van Leeuwenhoek 104:477–488. https://doi.org/10.1007/s10482-013-9980-7
Bondoso J, Albuquerque L, Lobo-da-Cunha A, da Costa MS, Harder J, Lage OM (2014) Rhodopirellula lusitana sp. nov. and Rhodopirellula rubra sp. nov., isolated from the surface of macroalgae. Syst Appl Microbiol 37:157–164. https://doi.org/10.1016/j.syapm.2013.11.004
Bondoso J, Albuquerque L, Nobre MF, Lobo-da-Cunha A, da Costa MS, Lage OM (2015) Roseimaritima ulvae gen. nov., sp. nov. and Rubripirellula obstinata gen. nov., sp. nov. two novel planctomycetes isolated from the epiphytic community of macroalgae. Syst Appl Microbiol 38:8–15. https://doi.org/10.1016/j.syapm.2014.10.004
Cayrou C, Raoult D, Drancourt M (2010) Broad-spectrum antibiotic resistance of Planctomycetes organisms determined by Etest. J Antimicrob Chemother 65:2119–2122. https://doi.org/10.1093/jac/dkq290
Chaudhari NM, Gupta VK, Dutta C (2016) BPGA—an ultra-fast pan-genome analysis pipeline. Sci Rep 6:24373. https://doi.org/10.1038/srep24373
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH (2019) GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36:1925–1927. https://doi.org/10.1093/bioinformatics/btz848
Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, Machi D, Mao C, Murphy-Olson D, Nguyen M, Nordberg EK, Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, VanOeffelen M, Vonstein V, Warren AS, Xia F, Xie D, Yoo H, Stevens R (2020) The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 48:606–612. https://doi.org/10.1093/nar/gkz943
Frank CS (2011) Polyphasische Taxonomie, Kerngenom und Lebenszyklus von Rhodopirellula-Stämmen. Unknown Publisher, Bremen
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M (2019) Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 10:2083. https://doi.org/10.3389/fmicb.2019.02083
Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8298–8303. https://doi.org/10.1073/pnas.1431443100
Graça AP, Calisto R, Lage OM (2016) Planctomycetes as novel source of bioactive molecules. Front Microbiol 7:1241. https://doi.org/10.3389/fmicb.2016.01241
Gupta RS (2014) Identification of conserved indels that are useful for classification and evolutionary studies. In: Goodfellow M, Sutcliffe I, Chun J (eds) Methods in microbiology. Academic Press, Oxford, pp 153–182
Jeske O, Surup F, Ketteniß M, Rast P, Förster B, Jogler M, Wink J, Jogler C (2016) Developing techniques for the utilization of planctomycetes as producers of bioactive molecules. Front Microbiol 7:1242. https://doi.org/10.3389/fmicb.2016.01242
Kallscheuer N, Wiegand S, Jogler M, Boedeker C, Peeters SH, Rast P, Heuer A, Jetten MSM, Rohde M, Jogler C (2020a) Rhodopirellula heiligendammensis sp. nov., Rhodopirellula pilleata sp. nov., and Rhodopirellula solitaria sp. nov. isolated from natural or artificial marine surfaces in Northern Germany and California, USA, and emended description of the genus Rhodopirellula. Antonie Van Leeuwenhoek 113:1737–1750. https://doi.org/10.1007/s10482-019-01366-5
Kallscheuer N, Wiegand S, Peeters SH, Jogler M, Boedeker C, Heuer A, Rast P, Jetten MSM, Rohde M, Jogler C (2020b) Description of three bacterial strains belonging to the new genus Novipirellula gen. nov., reclassificiation of Rhodopirellula rosea and Rhodopirellula caenicola and readjustment of the genus threshold of the phylogenetic marker rpoB for Planctomycetaceae. Antonie Van Leeuwenhoek 113:1779–1795. https://doi.org/10.1007/s10482-019-01374-5
Kallscheuer N, Jogler M, Wiegand S, Peeters SH, Heuer A, Boedeker C, Jetten MSM, Rohde M, Jogler C (2020c) Three novel Rubripirellula species isolated from plastic particles submerged in the Baltic Sea and the estuary of the river Warnow in northern Germany. Antonie Van Leeuwenhoek 113:1767–1778. https://doi.org/10.1007/s10482-019-01368-3
Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/bf01731581
Kizina J, Žure M, Rhiel E, Munn CB, Richter M, Harder J (2015) Permanent draft genome of ’Rhodopirellula islandica’ strain K833. Mar Genomics 24:249–251. https://doi.org/10.1016/j.margen.2015.07.011
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
Kumar D, Gaurav K, Jagadeeshwari U, Deepshikha G, Ch S (2020) Roseimaritima sediminicola sp. nov., a new member of Planctomycetaceae isolated from Chilika lagoon. Int J Syst Evol Microbiol 70:2616–2623. https://doi.org/10.1099/ijsem.0.004076
Kumar D, Kumar G, Jagadeeshwari U, Sasikala C, Ramana CV (2021a) "Candidatus Laterigemmans baculatus" gen. nov. sp. nov., the first representative of rod shaped planctomycetes with lateral budding in the family Pirellulaceae. Syst Appl Microbiol 44:126188. https://doi.org/10.1016/j.syapm.2021a.126188
Kumar G, Kumar D, Jagadeeshwari U, Sreya PK, Shabbir A, Sasikala C, Ramana CV (2021b) Crateriforma spongiae sp. nov., isolated from a marine sponge and emended description of the genus “Crateriforma". Antonie Van Leeuwenhoek 114:341–353. https://doi.org/10.1007/s10482-020-01515-1
Lage OM, Bondoso J (2011) Planctomycetes diversity associated with macroalgae. FEMS Microbiol Ecol 78:366–375. https://doi.org/10.1111/j.1574-6941.2011.01168.x
Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128. https://doi.org/10.1093/bioinformatics/btl529
Li Y, Xue H, Sang SQ, Lin CL, Wang XZ (2017) Phylogenetic analysis of family Neisseriaceae based on genome sequences and description of Populibacter corticis gen. nov., sp. nov., a member of the family Neisseriaceae, isolated from symptomatic bark of Populus × euramericana canker. PLoS ONE 12:e0174506. https://doi.org/10.1371/journal.pone.0174506
Liang KYH, Orata FD, Boucher YF, Case RJ (2021) Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter Clade” into a novel family, Roseobacteraceae fam. nov. Front Microbiol 12:683109. https://doi.org/10.3389/fmicb.2021.683109
Lodha T, Narvekar S, Karodi P (2021) Classification of uncultivated anammox bacteria and Candidatus Uabimicrobium into new classes and provisional nomenclature as Candidatus Brocadiia classis nov. and Candidatus Uabimicrobiia classis nov. of the phylum Planctomycetes and novel family Candidatus Scalinduaceae fam. nov to accommodate the genus Candidatus Scalindua. Syst Appl Microbiol 44:126272. https://doi.org/10.1016/j.syapm.2021.126272
Lopes-Santos L, Castro DBA, Ferreira-Tonin M, Correa DBA, Weir BS, Park D, Ottoboni LMM, Neto JR, Destéfano SAL (2017) Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Antonie Van Leeuwenhoek 110:727–736. https://doi.org/10.1007/s10482-017-0842-6
Luo C, Rodriguez-R LM, Konstantinidis KT (2014) My Taxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 42:e73. https://doi.org/10.1093/nar/gku169
Marinho C, Lage OM, Sousa CD, Catita J, Antunes SC (2019) Assessment of Rhodopirellula rubra as a supplementary and nutritional food source to the microcrustacean Daphnia magna. Antonie Van Leeuwenhoek 112:1231–1243. https://doi.org/10.1007/s10482-019-01255-x
Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:281–285. https://doi.org/10.1007/s12275-018-8014-6
Oren A, Garrity GM (2021) Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 71:005056. https://doi.org/10.1099/ijsem.0.005056
Pallen MJ, Rodriguez-R LM, Alikhan NF (2022) Naming the unnamed: over 65,000 Candidatus names for unnamed Archaea and Bacteria in the Genome Taxonomy Database. Int J Syst Evol Microbiol 72:005482. https://doi.org/10.1099/ijsem.0.005482
Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil PA, Hugenholtz P (2022) GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 50:D785–D794. https://doi.org/10.1093/nar/gkab776
Patel S, Gupta RS (2020) A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 70:406–438. https://doi.org/10.1099/ijsem.0.003775
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Rast P, Boedeker C, Rohde M, Jogler C (2020) Three marine strains constitute the novel genus and species Crateriforma conspicua in the phylum Planctomycetes. Antonie Van Leeuwenhoek 113:1797–1809. https://doi.org/10.1007/s10482-019-01375-4
Qin Q, Xie B, Zhang X, Chen X, Zhou B, Zhou J, Oren A, Zhang YZ (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196:2210–2215. https://doi.org/10.1128/jb.01688-14
Rai A, Jagadeeshwari U, Deepshikha G, Smita N, Sasikala C, Ramana CV (2021) Phylotaxogenomics for the reappraisal of the genus Roseomonas with the creation of Six New Genera. Front Microbiol 12:677842. https://doi.org/10.3389/fmicb.2021.677842
Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106
Rodriguez LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe 9:111–117
Roh SW, Lee HW, Yim KJ, Shin NR, Lee J, Whon TW, Lim NL, Kim D, Bae JW (2013) Rhodopirellula rosea sp. nov., a novel bacterium isolated from an ark clam Scapharca broughtonii. J Microbiol 51:301–304. https://doi.org/10.1007/s12275-013-3210-x
Rosselló-Móra R, Konstantinidis KT, Sutcliffe I, Whitman W (2020) Opinion: Response to concerns about the use of DNA sequences as types in the nomenclature of prokaryotes. Syst Appl Microbiol 43:126070. https://doi.org/10.1016/j.syapm.2020.126070
Schlesner H, Rensmann C, Tindall BJ, Gade D, Rabus R, Pfeiffer S, Hirsch P (2004) Taxonomic heterogeneity within the Planctomycetales as derived by DNA–DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula. Int J Syst Evol Microbiol 54:1567–1580. https://doi.org/10.1099/ijs.0.63113-0
Suresh G, Lodha TD, Indu B, Sasikala C, Ramana CV (2019) Taxogenomics resolves conflict in the genus Rhodobacter: a two and half decades pending thought to reclassify the genus Rhodobacter. Front Microbiol 10:2480. https://doi.org/10.3389/fmicb.2019.02480
Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266. https://doi.org/10.1099/ijs.0.016949-0
Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438. https://doi.org/10.1128/MMBR.60.2.407-438.1996
Vitorino IR, Lage OM (2022) The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie Van Leeuwenhoek 115:169–201. https://doi.org/10.1007/s10482-021-01699-0
Vitorino IR, Klimek D, Calusinska M, Lobo-da-Cunha A, Vasconcelos V, Lage OM (2022) Rhodopirellula aestuarii sp. nov., a novel member of the genus Rhodopirellula isolated from brackish sediments collected in the Tagus River estuary, Portugal. Syst Appl Microbiol 45:126360. https://doi.org/10.1016/j.syapm.2022.126360
Volpiano CG, Sant'Anna FH, da Mota FF, Sangal V, Sutcliffe I, Munusamy M, Saravanan VS, See-Too WS, Passaglia LMP, Rosado AS (2021) Proposal of Carbonactinosporaceae fam. nov. within the class Actinomycetia. Reclassification of Streptomyces thermoautotrophicus as Carbonactinospora thermoautotrophica gen. nov., comb. nov. Syst Appl Microbiol 44:126223. https://doi.org/10.1016/j.syapm.2021.126223
Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249. https://doi.org/10.1016/j.copbio.2006.05.005
Wegner CE, Richter-Heitmann T, Klindworth A, Klockow C, Richter M, Achstetter T, Glöckner FO, Harder J (2013) Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Mar Genomics 9:51–61. https://doi.org/10.1016/j.margen.2012.12.001
Wiegand S, Jogler M, Jogler C (2018) On the maverick Planctomycetes. FEMS Microbiol Rev 42:739–760. https://doi.org/10.1093/femsre/fuy029
Wiegand S, Jogler M, Boedeker C, Pinto D, Vollmers J, Rivas-Marín E, Kohn T, Peeters SH, Heuer A, Rast P, Oberbeckmann S, Bunk B, Jeske O, Meyerdierks A, Storesund JE, Kallscheuer N, Lücker S, Lage OM, Pohl T, Merkel BJ, Hornburger P, Müller RW, Brümmer F, Labrenz M, Spormann AM, Op den Camp HJM, Overmann J, Amann R, Jetten MSM, Mascher T, Medema MH, Devos DP, Kaster AK, Øvreås L, Rohde M, Galperin MY, Jogler C (2020) Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology. Nat Microbiol 5:126–140. https://doi.org/10.1038/s41564-019-0588-1
Wiegand S, Rast P, Kallscheuer N, Jogler M, Heuer A, Boedeker C, Jeske O, Kohn T, Vollmers J, Kaster AK, Quast C, Glöckner FO, Rohde M, Jogler C (2021) Analysis of Bacterial Communities on North Sea Macroalgae and Characterization of the Isolated Planctomycetes Adhaeretor mobilis gen. nov., sp. nov., Roseimaritima multifibrata sp. nov., Rosistilla ulvae sp. nov. and Rubripirellula lacrimiformis sp. nov. Microorganisms 9:1494. https://doi.org/10.3390/microorganisms9071494.
Wirth JS, Whitman WB (2018) Phylogenomic analyses of a clade within the Roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 68:2393–2411. https://doi.org/10.1099/ijsem.0.002833
Yoon J, Matsuo Y, Kasai H, Lee MK (2015) Phylogenetic and taxonomic analyses of Rhodopirellula caenicola sp. nov., a new marine Planctomycetes species isolated from Iron Sand. J Phylogenet Evol Biol 3:143. https://doi.org/10.4172/2329-9002.1000143
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107
Acknowledgements
We are grateful to Prof. Bernhard Schink (University of Konstanz, Germany) and Prof. Aharon Oren (The Hebrew University of Jerusalem, Israel) for correcting the protologues. We thank Prof. Markus Göker (DOE-JGI, USA) for sharing the genome information. SPK thanks PMRF for a fellowship. AR and VL thank DST Inspire (JRF/SRF), RB thanks UGC JRF, and JU thanks TEQIP for fellowship. Ramana thanks the Department of Biotechnology, Government of India for the award of Tata Innovation Fellowship and IoE-UoH for project grant. Financial support received from CSIR is acknowledged. Infrastructural facilities funded by DST-FIST (UoH and JNTUH), UGC-SAP (DRS; UoH), TEQIP and AICTE (from JNTUH) are acknowledged.
Funding
The work was supported by the IoE-UoH project grant, Prime Minister Research Fellow (PMRF) Research grant, Council for Scientific and Industrial Research (38/(1470)/18/EMR-II).
Author information
Authors and Affiliations
Contributions
SPK designed and planned the studies under the supervision of CS and CVR. SPK, AR, GS, and JU performed the genomic, phylogenetic analysis and functional annotations. VCA, VL, and BR performed the comparative genomic analysis. SPK wrote the manuscript. CVR and CS supervised the study, contributed to text preparation and revised the manuscript. All authors read and approved the final version of the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sreya, P., Suresh, G., Rai, A. et al. Revisiting the taxonomy of the genus Rhodopirellula with the proposal for reclassification of the genus to Rhodopirellula sensu stricto, Aporhodopirellula gen. nov., Allorhodopirellula gen. nov. and Neorhodopirellula gen. nov. Antonie van Leeuwenhoek 116, 243–264 (2023). https://doi.org/10.1007/s10482-022-01801-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10482-022-01801-0