Abstract
Two facultatively anaerobic, chemoorganoheterotrophic bacterial strains, designated JR1/69-2-13T and JR1/69-3-13T, were isolated from nitrate- and radionuclide-contaminated groundwater (Ozyorsk town, South Urals, Russia). Both strains were found to be motile, Gram-stain negative rod-shaped neutrophilic, psychrotolerant bacteria that grow within the temperature range from 5–10 to 33 °C at 0–3 (0–5)% NaCl (w/v). The major cellular fatty acids were identified as C16:0, C16:1 ω7c, C18:1 ω7c and C17:0 cyclo. The major polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol and unidentified aminophospholipids. The genomic G + C content of strains JR1/69-2-13T and JR1/69-3-13T was determined to be 57.2 and 57.9%, respectively. The 16S rRNA gene sequences of the strains showed high similarity between each other (98.6%) and to members of the genera Pusillimonas (96.8–98.4%) and Candidimonas (97.1–98.0%). The average nucleotide identity and digital DNA–DNA hybridization (dDDH) values among genomes of the new isolates and Pusillimonas and Candidimonas genomes were below 84.5 and 28.8%, respectively, i.e., below the thresholds for species delineation. Based on the phylogenomic, phenotypic and chemotaxonomic characterisation, we propose assignment of strains JR1/69-3-13T (= VKM B-3223T = KCTC 62615T) and JR1/69-2-13T (= VKM B-3222T = KCTC 62614T) to a new genus Pollutimonas as the type strains of two new species, Pollutimonas subterranea gen. nov., sp. nov. and Pollutimonas nitritireducens sp. nov., respectively. As a result of the taxonomic revision of the genus Pusillimonas, three novel genera, Allopusillimonas, Neopusillimonas, and Mesopusillimonas are also proposed; and Candidimonas bauzanensis is reclassified as Pollutimonas bauzanensis comb. nov. Genome analysis of the new isolates suggested molecular mechanisms of their adaptation to an environment highly polluted with nitrate and radionuclides.
This is a preview of subscription content, access via your institution.



Data availability
The GenBank/EMBL/DDBJ accession numbers of the 16S rRNA gene sequence of strains JR1/69-2-13T and JR1/69-3-13T are MG205613 and MG205614, respectively. The GenBank/EMBL/DDBJ accession numbers of the genomic assemblies of strains JR1/69-2-13T (= VKM B-3222T = KCTC 62614T) and JR1/69-3-13T (= VKM B-3223T = KCTC 62615T) are GCA_002849615.1 (PDNV00000000) and GCA_002849655.1 (PDNW00000000), respectively.
References
Alexakhin AI, Glagolev AV, Drozhko EG, Zinin AI, Zinina GA, Ivanov IA, Mokrov YG, Orlova EI, Samsonov BG, Samsonova LM, et al. (2007) Reservoir-9: Storage of liquid radioactive waste and its impact on the geological environment. In: Drozhko EG, Samsonov BG, (eds), Atomic Energy Agency, Moscow, Russia, 250 p. ISBN 978-5-9901363-1-1
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Alvarez AH, Moreno-Sánchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181(23):7398–7400. https://doi.org/10.1128/JB.181.23.7398-7400.1999
Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384. https://doi.org/10.1016/S0168-6445(03)00046-9
Bondarczuk K, Piotrowska-Seget Z (2013) Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 29:397–405. https://doi.org/10.1007/s10565-013-9262-1
Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183(19):5651–5658. https://doi.org/10.1128/JB.183.19.5651-5658.2001
Cai SJ, Inouye M (2002) EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J Biol Chem 277:24155–24161. https://doi.org/10.1074/jbc.M110715200
Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
Chakraborty S, Winardhi RS, Morgan LK, Yan J, Kenney LJ (2017) Non-canonical activation of OmpR drives acid and osmotic stress responses in single bacterial cells. Nat Commun 8:1587. https://doi.org/10.1038/s41467-017-02030-0
Chouikha I, Sturdevant DE, Jarrett C, Sun YC, Hinnebusch BJ (2019) Differential gene expression patterns of Yersinia pestis and Yersinia pseudotuberculosis during infection and biofilm formation in the flea digestive tract. Msystems 4(1):e00217-e218. https://doi.org/10.1128/mSystems.00217-18
Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516
Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan NA (2012) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly 'thermoglucosidasius’); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62:1470–1485. https://doi.org/10.1099/ijs.0.030346-0
De Ley J, Segers P, Kersters K, Mannheim W, Lievens A (1986) Intra- and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family Alcaligenaceae. Int J Syst Evol Microbiol 36(3):405–414. https://doi.org/10.1099/00207713-36-3-405
Delmont TO, Eren AM (2018) Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6:e4320. https://doi.org/10.7717/peerj.4320
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340
Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ 3:e1319. https://doi.org/10.7717/peerj.1319
Garrity G, Bell J, Lilburn T (2005a) Phylum XIV. Proteobacteria phyl. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey's manual of systematic bacteriology, second edition, vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria). Springer, New York, p 1
Garrity G, Bell J, Lilburn T (2005b) Class II. Betaproteobacteria class. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey's manual of systematic bacteriology, second edition, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, p 575
Garrity G, Bell J, Lilburn T (2005c) Order I. Burkholderiales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey's manual of systematic bacteriology, second edition, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, p 575
Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG, Rensing C (2001) NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183(9):2803–2807. https://doi.org/10.1128/JB.183.9.2803-2807.2001
Grouzdev DS, Tourova TP, Babich TL, Shevchenko MA, Sokolova DS, Abdullin RR, Poltaraus AB, Toshchakov SV, Nazina TN (2018a) Whole-genome sequence data and analysis of type strains “Pusillimonas nitritireducens” and “Pusillimonas subterraneus” isolated from nitrate- and radionuclide-contaminated groundwater in Russia. Data Brief 21:882–887. https://doi.org/10.1016/j.dib.2018.10.060
Grouzdev DS, Rysina MS, Bryantseva IA, Gorlenko VM, Gaisin VA (2018b) Draft genome sequences of 'Candidatus Chloroploca asiatica’ and 'Candidatus Viridilinea mediisalina’, candidate representatives of the Chloroflexales order: phylogenetic and taxonomic implications. Stand Genomic Sci 13:24. https://doi.org/10.1186/s40793-018-0329-8
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018a) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35(2):518–522. https://doi.org/10.1093/molbev/msx281
Hoang DT, Vinh LS, Flouri T, Stamatakis A, von Haeseler A, Minh BQ (2018b) MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evol Biol 18(1):11. https://doi.org/10.1186/s12862-018-1131-3
Hobman J, Crossman LC (2015) Bacterial antimicrobial metal ion resistance. J Med Microbiol 64:471–497. https://doi.org/10.1099/jmm.0.023036-0
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. https://doi.org/10.1038/s41467-018-07641-9
Jin L, Ko SR, Cui Y, Lee CS, Oh HM, Ahn CY, Lee HG (2017) Pusillimonas caeni sp. nov., isolated from a sludge sample of a biofilm reactor. Antonie Van Leeuwenhoek 110:125–132. https://doi.org/10.1007/s10482-016-0782-6
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285
Kämpfer P, Denger K, Cook AM, Lee ST, Jäckel U, Denner EBM, Busse HJ (2006) Castellaniella gen. nov., to accommodate the phylogenetic lineage of Alcaligenes defragrans, and proposal of Castellaniella defragrans gen. nov., comb. nov. and Castellaniella denitrificans sp. nov. Int J Syst Evol Microbiol 56:815–819. https://doi.org/10.1099/ijs.0.63989-0
Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. https://doi.org/10.1016/j.jmb.2015.11.006
Kato K, Nagaosa K, Kinoshita T, Kastsuyama C, Nazina TN, Ohnuki T, Kalmykov SN (2020) Microbial ecological function in migration of radionuclides in groundwater. In: Kato K, Konoplev A, Kalmykov SN (eds) Behavior of radionuclides in the environment I. Springer, Singapore, pp 1–34. https://doi.org/10.1007/978-981-15-0679-6_1
Koh HW, Song MS, Do KT, Kim H, Park SJ (2019) Pusillimonas thiosulfatoxidans sp. nov., a thiosulfate oxidizer isolated from activated sludge. Int J Syst Evol Microbiol 69:1041–1046. https://doi.org/10.1099/ijsem.0.003266
Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264. https://doi.org/10.1128/JB.187.18.6258-6264.2005
Konstantinidis KT, Rosselló-Móra R, Amann R (2017) Uncultivated microbes in need of their own taxonomy. ISME J 11(11):2399–2406. https://doi.org/10.1038/ismej.2017.113
Ladomersky E, Petris MJ (2015) Copper tolerance and virulence in bacteria. Metallomics 7:957–964. https://doi.org/10.1039/c4mt00327f
Lee M, Woo SG, Chae M, Ten LN (2010) Pusillimonas soli sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 60:2326–2330. https://doi.org/10.1099/ijs.0.020404-0
Li J, Qi M, Lai Q, Dong C, Liu X, Wang G, Shao Z (2020) Pusillimonas maritima sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 70:3483–3490. https://doi.org/10.1099/ijsem.0.004202
Lin SY, Hameed A, Tsai CF, Tang YS, Young CC (2022) Pusillimonas faecipullorum sp. nov., isolated from the poultry manure. Arch Microbiol 204(5):256. https://doi.org/10.1007/s00203-022-02859-0
Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide–microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16:254–260. https://doi.org/10.1016/j.copbio.2005.04.012
Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14(1):60. https://doi.org/10.1186/1471-2105-14-60
Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M (2022) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50(D1):D801–D807. https://doi.org/10.1093/nar/gkab902
Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 47:87–95. https://doi.org/10.1111/J.1365-2672.1979.TB01172.X
Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241. https://doi.org/10.1016/0167-7012(84)90018-6
Muller D, Lièvremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185(1):135–141. https://doi.org/10.1128/JB.185.1.135-141.2003
Nazina TN, Babich TL, Kostryukova NK, Sokolova DS, Abdullin RR, Tourova TP, Poltaraus AB, Kalmykov SN, Zakharova EV, Myasoedov BF, Nagaosa K, Kato K (2020a) Microbial diversity and possible activity in nitrate- and radionuclide-contaminated groundwater. In: Kato K, Konoplev A, Kalmykov SN (eds) Behavior of radionuclides in the environment I. Springer, Singapore, pp 35–66. https://doi.org/10.1007/978-981-15-0679-6_2
Nazina T, Babich T, Kostryukova N, Sokolova D, Abdullin R, Tourova T, Kadnikov V, Mardanov A, Ravin N, Grouzdev D, Poltaraus A, Kalmykov S, Safonov A, Zakharova E, Novikov A, Kato K (2020b) Ultramicrobacteria from nitrate- and radionuclide-contaminated groundwater. Sustainability 12(3):1239. https://doi.org/10.3390/su12031239
Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184. https://doi.org/10.1016/j.chemgeo.2013.10.034
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300
Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak production Association, Russia. Science 314(5799):638–641. https://doi.org/10.1126/science.1131307
Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ (2014) BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res 42:D737–D743. https://doi.org/10.1093/nar/gkt1252
Park MS, Park YJ, Jung JY, Lee SH, Park W, Lee K, Jeon CO (2011) Pusillimonas harenae sp. nov., isolated from a sandy beach, and emended description of the genus Pusillimonas. Int J Syst Evol Microbiol 61:2901–2906. https://doi.org/10.1099/ijs.0.029892-0
Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil PA, Hugenholtz P (2022) GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 50(D1):D785–D794. https://doi.org/10.1093/nar/gkab776
Pinel-Cabello M, Jroundi F, López-Fernández M, Geffers R, Jarek M, Jauregui R, Link A, Vílchez-Vargas R, Merroun ML (2021) Multisystem combined uranium resistance mechanisms and bioremediation potential of Stenotrophomonas bentonitica BII-R7: transcriptomics and microscopic study. J Hazard Mater 403:123858. https://doi.org/10.1016/j.jhazmat.2020.123858
Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Oren A, Zhang YZ (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196(12):2210–2215. https://doi.org/10.1128/JB.01688-14
Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
Rybal’chenko AI, Pimenov MK, Kostin PP, Balukova VD, Nosukhin AV, Mikerin EI, Egorov NN, Kaimin EP, Kosareva IM, Kurochkin VM (1998) Deep injection disposal of liquid radioactive waste in Russia. In: Foley MG, Ballou LMG (eds). Battelle Press, Columbus, Ohio pp 206
Safonov AV, Perepelov AV, Babich TL, Popova NM, Grouzdev DS, Filatov AV, Shashkov AS, Demina LI, Nazina TN (2020) Structure and gene cluster of the O-polysaccharide from Pseudomonas veronii A-6-5 and its uranium bonding. Int J Biol Macromol 165(Pt B):2197–2204. https://doi.org/10.1016/j.ijbiomac.2020.10.038
Samsonova LM, Drozhko EG (1996) Migration of high-density industrial waste solutions through fresh groundwaters. In: Apps JA, Tsang C-F (eds) Deep injection disposal of hazardous and industrial waste: scientific and engineering aspects. Academic Press, Cambridge, pp 669–680
Semenova EM, Sokolova DS, Grouzdev DS, Poltaraus AB, Vinokurova NG, Tourova TP, Nazina TN (2019) Geobacillus proteiniphilus sp. Nov., a thermophilic bacterium isolated from a high-temperature heavy oil reservoir in China. Int J Syst Evol Microbiol 69(10):3001–3008. https://doi.org/10.1099/ijsem.0.003486
Semenova EM, Grouzdev DS, Sokolova DS, Tourova TP, Poltaraus AB, Potekhina NV, Shishina PN, Bolshakova MA, Avtukh AN, Ianutsevich EA, Tereshina VM, Nazina TN (2022) Physiological and genomic characterization of Actinotalea subterranea sp. nov. from oil-degrading methanogenic enrichment and reclassification of the family Actinotaleaceae. Microorganisms 10:378. https://doi.org/10.3390/microorganisms10020378
Senko JM, Istok JD, Suflita JM, Krumholz LR (2002) In-situ evidence for uranium immobilization and remobilization. Environ Sci Technol 36:1491–1496. https://doi.org/10.1021/es011240x
Solodov IN, Zotov AV, Khoteev AD, Mukhamet-Galeev AP, Tagirov BR, Apps JA (1998) Geochemistry of natural and contaminated subsurface waters in fissured bed rocks of the Lake Karachai area, Southern Urals, Russia. Appl Geochem 8:921–939
Srinivasan S, Kim MK, Sathiyaraj G, Kim YJ, Yang DC (2010) Pusillimonas ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:1783–1787. https://doi.org/10.1099/ijs.0.018358-0
Stein LY, Arp DJ, Berube PM, Chain PS, Hauser L, Jetten MS, Klotz MG, Larimer FW, Norton JM, Op den Camp HJ, Shin M, Wei X (2007) Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 9(12):2993–3007
Stolz A, Bürger S, Kuhm A, Kämpfer P, Busse HJ (2005) Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. Int J Syst Evol Microbiol 55:1077–1081. https://doi.org/10.1099/ijs.0.63466-0
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120
Vaz-Moreira I, Figueira V, Lopes AR, De Brandt E, Vandamme P, Nunes OC, Manaia CM (2011) Candidimonas nitroreducens gen. nov., sp. nov. and Candidimonas humi sp. nov., isolated from sewage sludge compost. Int J Syst Evol Microbiol 61:238–2246. https://doi.org/10.1099/ijs.0.021188-0
Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166. https://doi.org/10.1146/annurev.micro.59.030804.121357
Yao L, Jia Y, Lai YH, Xue F, Wang JL (2022) Pusillimonas minor sp. nov., a novel member of the genus Pusillimonas isolated from activated sludge. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005323
Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755
Zhang DC, Busse HJ, Wieser C, Liu HC, Zhou YG, Schinner F, Margesin R (2012) Candidimonas bauzanensis sp. nov., isolated from soil, and emended description of the genus Candidimonas Vaz-Moreira et al. 2011. Int J Syst Evol Microbiol 62:2084–2089. https://doi.org/10.1099/ijs.0.036400-05
Acknowledgements
We thank Professor A. Oren from The Hebrew University of Jerusalem (Israel) for his help on the nomenclature of the new species and genera. The authors are grateful N.A. Kostrykina from the Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia, for the help in microscopic studies of the strains. The authors are grateful R.R. Abdullin (present place of work Gemotest Laboratory LLC) for performing environmental studies and isolating the strains. The authors are especially grateful to Professor Iain Sutcliffe from Northumbria University (UK) for editing of the manuscript and for valuable comments. Bioinformatics analysis was performed using computing resources at the SciBear OU (https://sci-bear.com/).
Funding
This research was mainly funded by the Ministry of Science and Higher Education of the Russian Federation.
Author information
Authors and Affiliations
Contributions
Conceptualization: TB, DG and TN; funding acquisition: TN; investigation: TB, DS, TT, AP; DG performed the genomic and phylogenetic analysis; project administration: TN; software: DG and TT: supervision, TN; validation: TB, DG and DS; visualization: TB, DG, and TN; writing original draft, review and editing: DG and TN. All authors have read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Ethical approval
This research did not contain any studies with humans or animals performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Babich, T.L., Grouzdev, D.S., Sokolova, D.S. et al. Genome analysis of Pollutimonas subterranea gen. nov., sp. nov. and Pollutimonas nitritireducens sp. nov., isolated from nitrate- and radionuclide-contaminated groundwater, and transfer of several Pusillimonas species into three new genera Allopusillimonas, Neopusillimonas, and Mesopusillimonas. Antonie van Leeuwenhoek 116, 109–127 (2023). https://doi.org/10.1007/s10482-022-01781-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10482-022-01781-1
Keywords
- Allopusillimonas
- Bacterial taxonomy
- Mesopusillimonas
- Neopusillimonas
- Nitrate- and radionuclide-contaminated groundwater
- Pollutimonas
- Pusillimonas