Skip to main content
Log in

Persistence of ecologically similar fungi in a restricted floral niche

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Fungi in the genera Knoxdaviesia and Sporothrix dominate fungal communities within Protea flowerheads and seed cones (infructescences). Despite apparently similar ecologies, they show strong host recurrence and often occupy the same individual infructescence. Differences in host chemistry explain their host consistency, but the factors that allow co-occupancy of multiple species within individual infructescences are unknown. Sporothrix splendens and K. proteae often grow on different senescent tissue types within infructescences of their P. repens host, indicating that substrate-related differences aid their co-occupancy. Sporothrix phasma and K. capensis grow on the same tissues of P. neriifolia suggesting neutral competitive abilities. Here we test the hypothesis that differences in host-tissues dictate competitive abilities of these fungi and explain their co-occupancy of this spatially restricted niche. Media were prepared from infructescence bases, bracts, seeds, or pollen presenters of P. neriifolia and P. repens. As expected, K. capensis was unable to grow on seeds whilst S. phasma could. As hypothesised, K. capensis and S. phasma had equal competitive abilities on pollen presenters, appearing to explain their co-occupancy of this resource. Growth of K. proteae was significantly enhanced on pollen presenters while that of S. splendens was the same as the control. Knoxdavesia proteae grew significantly faster than S. splendens on all tissue types. Despite this, S. splendens was a superior competitor on all tissue types. For K. proteae to co-occupy infructescences with S. splendens for extended periods, it likely needs to colonize pollen presenters before the arrival of S. splendens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data is available from FR.

Code availability

Not applicable.

References

  • Aylward J, Dreyer LL, Steenkamp ET, Wingfield MJ, Roets F (2014a) Panmixia defines the genetic diversity of a unique arthropod-dispersed fungus specific to Protea flowers. Ecol Evol 4(17):3444–3455

    Article  PubMed  PubMed Central  Google Scholar 

  • Aylward J, Dreyer LL, Steenkamp ET, Wingfield MJ, Roets F (2014b) Development of polymorphic microsatellite markers for the genetic characterisation of Knoxdaviesia proteae (Ascomycota: Microascales) using ISSR-PCR and pyrosequencing. Mycol Prog 13(2):439–444

    Article  Google Scholar 

  • Aylward J, Dreyer LL, Steenkamp ET, Wingfield MJ, Roets F (2015a) Long-distance dispersal and recolonization of a fire-destroyed niche by a mite-associated fungus. Fungal Biol 119(4):245–256

    Article  PubMed  Google Scholar 

  • Aylward J, Dreyer LL, Steenkamp ET, Wingfield MJ, Roets F (2015b) Knoxdaviesia proteae is not the only Knoxdaviesia-symbiont of Protea repens. IMA Fungus 6(2):471–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Aylward J, Steenkamp ET, Dreyer LL, Roets F, Wingfield BD, Wingfield MJ (2016) Genome sequences of Knoxdaviesia capensis and K proteae (Fungi: Ascomycota) from Protea trees in South Africa. Stand Genomic Sci 11(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Aylward J, Wingfield BD, Dreyer LL, Roets F, Wingfield MJ, Steenkamp ET (2017) Contrasting carbon metabolism in saprotrophic and pathogenic microascalean fungi from Protea trees. Fungal Ecol 30:88–100

    Article  Google Scholar 

  • Bleiker KP, Six DL (2009) Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Microb Ecol 57(1):191–202

    Article  CAS  PubMed  Google Scholar 

  • Coetzee JH, Giliomee JH (1987a) Seed predation and survival in the infructescences of Protea repens (Proteaceae). S Afr J Bot 53(1):61–64

    Article  Google Scholar 

  • Coetzee JH, Giliomee JH (1987b) Borers and other inhabitants of the inflorescences and infructescences of Protea repens in the western Cape. Phytophylactica 19:1–6

    Google Scholar 

  • Crous PW, Summerell BA, Shivas RG, Burgess TI, Decock CA, Dreyer LL, Granke LL, Guest DI, Hardy GSJ, Hausbeck MK, Hüberli D (2012) Fungal Planet description sheets: 107–127. Persoonia Molecular Phylogeny and Evolution of Fungi 28:138–182

    Article  CAS  PubMed Central  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S (2020) Multcomp: simultaneous inference in general parametric models. http://multcomp.R-forge.R-project.org

  • Human ZR, Moon K, Bae M, de Beer ZW, Cha S, Wingfield MJ, Slippers B, Oh DC (2016) Antifungal Streptomyces spp associated with the infructescences of Protea spp in South Africa. Front Microbiol 7:1657

    Article  PubMed  PubMed Central  Google Scholar 

  • Human ZR, Crous CJ, Roets F, Venter SN, Wingfield MJ, de Beer ZW (2018) Biodiversity and ecology of flower-associated actinomycetes in different flowering stages of Protea repens. Antonie Van Leeuwenhoek, International Journal of General and Molecular Microbiology 111(2):209–226

    Article  CAS  Google Scholar 

  • Human ZR, Roets F, Crous C, Wingfield M, De Beer W, Venter S (2021) Fire impacts bacterial composition in Protea repens (Proteaceae) infructescences. FEMS Microbiol Lett 368(19):132

    Article  Google Scholar 

  • Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, Mckenzie EHC, Photita W, Lumyong S (2007) Diversity of saprobic microfungi. Biodivers Conserv 16(1):7–35

    Article  Google Scholar 

  • Klepzig KD, Wilkens RT (1997) Competitive interactions among symbiotic fungi of the southern pine beetle. Appl Environ Microbiol 63(2):621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klepzig KD (1998) Competition between a biological control fungus, Ophiostoma piliferum, and symbionts of the southern pine beetle. Mycologia 90(1):69–75

    Article  Google Scholar 

  • Kodsueb R, McKenzie EHC, Lumyong S, Hyde KD (2008) Diversity of saprobic fungi on Magnoliaceae. Fungal Diversity 30(1):37–53

    Google Scholar 

  • Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52(1):427–451

    Article  PubMed  Google Scholar 

  • Kumar R, Tapwal A, da Silva JA, Baruah DM, Gogoi S (2012) Seasonal dynamics of leaf litter decomposition and fungal population in an undisturbed Dipterocarpus forest of North East India. Tree and Forestry Science and Biotechnology 6(1):130–134

    Google Scholar 

  • Lee S, Groenewald JZ, Taylor JE, Roets F, Crous PW (2003) Rhynchostomatoid fungi occurring on Proteaceae. Mycologia 95(5):902–910

    Article  PubMed  Google Scholar 

  • Lee S (2004) Diversity of saprobic hyphomycetes on Proteaceae and Restionaceae from South Africa. Fungal Diversity 17:91–114

    Google Scholar 

  • Lee S, Roets F, Crous PW (2005) Biodiversity of saprobic microfungi associated with the infructescences of Protea species in South Africa. Fungal Diversity 19:69–78

    Google Scholar 

  • Lodge DJ (1997) Factors related to diversity of decomposer fungi in tropical forests. Biodivers Conserv 6(5):681–688

    Article  Google Scholar 

  • Malloch D, Blackwell M (1993) Dispersal biology of ophiostomatoid fungi. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology and pathology. American Phytopathological Socety Press, St. Pauls, MN, USA, pp 195–206

    Google Scholar 

  • Marais GJ, Wingfield MJ (1994) Fungi associated with infructescences of Protea species in South Africa, including a new species of Ophiostoma. Mycol Res 98(4):369–374

    Article  Google Scholar 

  • Marais GJ, Wingfield MJ (1997) Ophiostoma protearum sp. nov. associated with Protea caffra infructescences. Canadian Journal of Botany 75(2):362–367.

  • Marais GJ, Wingfield MJ (2001) Ophiostoma africanum sp. nov., and a key to ophiostomatoid species from Protea infructescences. Mycol Res 105(2):240–246

    Article  Google Scholar 

  • Marincowitz S, Crous SW, Groenewald JZ, Wingfield MJ (2008) Microfungi occuring on Proteaceae in the Fynbos. CBS Fungal Biodiversity Centre, Utrecht Netherlands

    Google Scholar 

  • Mille-Lindblom C, Fischer H, Tranvik LJ (2006) Litter-associated bacteria and fungi - A comparison of biomass and communities across lakes and plant species. Freshw Biol 51(4):730–741

    Article  Google Scholar 

  • Mukwevho VO, Dreyer LL, Roets F (2020) Interplay between differential competition and actions of spore-vectors explain host exclusivity of saprobic fungi in Protea flowers. Antonie Van Leeuwenhoek, International Journal of General and Molecular Microbiology 113:2187–2200

    Article  CAS  Google Scholar 

  • Mukwevho VO, Dreyer LL, Roets F (2021) Early colonization of Protea flowers enables dominance of competitively weak saprobic fungi in seed cones, benefitting their hosts. Fungal Biol 126:122–131

    Article  PubMed  Google Scholar 

  • Ngubane NP, Dreyer LL, Oberlander KC, Roets F (2018) Two new Sporothrix species from Protea flower heads in South African Grassland and Savanna. Antonie Van Leeuwenhoek, International Journal of General and Molecular Microbiology 111(6):965–979

    Article  Google Scholar 

  • Osono T (2011) Diversity and functioning of fungi associated with leaf litter decomposition in Asian forests of different climatic regions. Fungal Ecol 4(6):375–385

    Article  Google Scholar 

  • Paulus B, Gadek P, Hyde KD (2003a) Estimation of microfungal diversity in tropical rain forest leaf litter using particle filtration: the effects of leaf storage and surface treatment. Mycol Res 107:748–756

    Article  PubMed  Google Scholar 

  • Paulus B, Barr ME, Gadek P, Hyde KD (2003b) Three new ascomycetes from a tropical Australian rainforest. Mycotaxon 88:87–96

    Google Scholar 

  • Paulus BC, Kanowski J, Gadek PA, Hyde KD (2006) Diversity and distribution of saprobic microfungi in leaf litter of an Australian tropical rainforest. Mycol Res 110(12):1441–1454

    Article  PubMed  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna. Austria, R Foundation for Statistical Computing, Vienna Austria

    Google Scholar 

  • Rebelo T (1995) Proteas of South Africa. Fernwood Press, South Africa

    Google Scholar 

  • Roets F, Dreyer LL, Crous PW (2005) Seasonal trends in colonisation of Protea infructescences by Gondwanamyces and Ophiostoma spp. S Afr J Bot 71(3–4):307–311

    Article  Google Scholar 

  • Roets F, Dreyer LL, Geertsema H, Crous PW (2006a) Arthropod communities in Proteaceae infructescences : seasonal variation and the influence of infructescence phenology. African Entomology 14(2):257–265

    Google Scholar 

  • Roets F, Wingfield MJ, Dreyer LL, Crous PW, Bellstedt DU (2006b) A PCR-based method to detect species of Gondwanamyces and Ophiostoma on surfaces of insects colonizing Protea flowers. Can J Bot 84(6):989–994

    Article  CAS  Google Scholar 

  • Roets F, De Beer ZW, Dreyer LL, Zipfel R, Crous PW, Wingfield MJ (2006c) Multi-gene phylogeny for Ophiostoma spp. reveals two new species from Protea infructescences. Stud Mycol 55:199–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Roets F, Wingfield MJ, Crous PW, Dreyer LL (2007) Discovery of fungus–mite mutualism in a unique niche. Environ Entomol 36(5):1226–1237

    Article  CAS  PubMed  Google Scholar 

  • Roets F, de Beer ZW, Wingfield MJ, Crous PW, Dreyer L (2008) Ophiostoma gemellus and Sporothrix variecibatus from mites infesting Protea infructescences in South Africa. Mycologia 100(3):496–510

    Article  PubMed  Google Scholar 

  • Roets F, Crous PW, Wingfield MJ, Dreyer LL (2009a) Mite-mediated hyperphoretic dispersal of from the infructescences of South African Protea spp. Environ Entomol 38(1):143–152

    Article  CAS  PubMed  Google Scholar 

  • Roets F, Wingfield MJ, Crous PW, Dreyer LL (2009b) Fungal radiation in the Cape Floristic Region: an analysis based on Gondwanamyces and Ophiostoma. Mol Phylogenet Evol 51(1):111–119

    Article  CAS  PubMed  Google Scholar 

  • Roets F, Wingfield BD, de Beer ZW, Wingfield MJ, Dreyer LL (2010) Two new Ophiostoma species from Protea caffra in Zambia. Persoonia: Molecular Phylogeny and Evolution of Fungi 24:18–28

    Article  CAS  Google Scholar 

  • Roets F, Wingfield MJ, Wingfield BD, Dreyer LL (2011) Mites are the most common vectors of the fungus Gondwanamyces proteae in Protea infructescences. Fungal Biol 115(4–5):343–350

    Article  PubMed  Google Scholar 

  • Roets F, Theron N, Wingfield MJ, Dreyer LL (2012) Biotic and abiotic constraints that facilitate host exclusivity of Gondwanamyces and Ophiostoma on Protea. Fungal Biol 116(1):49–61

    Article  PubMed  Google Scholar 

  • Roets F, Wingfield MJ, Dreyer CPW, LL, (2013) Taxonomy and ecology of ophiostomatoid fungi associated with Protea infructescences. In: Seifert KA, de Beer ZW, Wingfield MJ (eds) Ophiostomatoid fungi: Expanding Frontiers. CBS Biodiversity Series, Utrecht The Netherlands, pp 177–187

    Google Scholar 

  • Tedersoo L, Mett M, Ishida TA, Bahram M (2013) Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol 199(3):822–831

    Article  PubMed  Google Scholar 

  • Theron-De Bruin N, Dreyer LL, Ueckermann EA, Wingfield MJ, Roets F (2018) Birds mediate a fungus-mite mutualism. Microb Ecol 75(4):863–874

    Article  PubMed  Google Scholar 

  • Willey RW, Rao MR (1980) A competitive ratio for quantifying competition between intercrops. Exp Agric 16(2):117–125

    Article  Google Scholar 

  • Wingfield MJ, Van Wyk PS (1993) A new species of Ophiostoma from Protea infructescences in South Africa. Mycol Res 97(6):709–716

    Article  Google Scholar 

  • Wingfield MJ, Van Wyk PS, Marasas WFO (1988) Ceratocystiopsis proteae sp. Nov., with a new anamorph genus. Mycologia 80(1):23–30

    Article  Google Scholar 

  • Wolfe BE, Pringle A (2012) Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus. ISME J 6(4):745–755

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Liu H, Wang C, Xu JR (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14(1):274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by the Department of Science and Technology (DST) ⁄ National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CHTB). The authors thank the South African National Parks Board (SANPARKS) and Western Cape Nature Conservation Board for issuing the necessary collecting permits.

Funding

This project was funded by the DST⁄NRF Centre of Excellence in Tree Health Biotechnology (CHTB).

Author information

Authors and Affiliations

Authors

Contributions

V.O.M: Study design, data collection, laboratory work, statistical analyses, writing of first draft; F.R., L.L.D: Study concept, study design, acquired funding, statistical analyses, writing of manuscript.

Corresponding author

Correspondence to Francois Roets.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukwevho, V.O., Dreyer, L.L. & Roets, F. Persistence of ecologically similar fungi in a restricted floral niche. Antonie van Leeuwenhoek 115, 761–771 (2022). https://doi.org/10.1007/s10482-022-01732-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-022-01732-w

Keywords

Navigation