Skip to main content

Advertisement

Log in

Biological control: a novel strategy for the control of the plant parasitic nematodes

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Plant parasitic nematodes (Root-knot nematodes, Meloidogyne spp.) are rounded worms, microscopic, and cause many agricultural economic losses. Their attacks have a direct impact on the productivity of cultivated crops by reducing their fruit quantity. Chemical control is widespread all over the world, but biological control is the most effective way to reduce the number of pests that infect crops, particularly by the use of microorganisms like fungi and bacteria. Biological control is rapidly evolving, and more products are being sold worldwide over time. They can be produced by fungi, bacteria, or actinomycetes that can destruct plant parasite nematodes and feed on them. Nematophagous microorganisms as the natural enemies of nematodes have a promising way of controlling nematodes. Some of them create net-like substances and traps to take the worms from outside and finally kill them. Other parasites serve as internal parasites in order to produce toxins and to produce virulence to kill nematodes. Comprehension of the molecular basis for microbial nematode interactions gives important insights into how successful biological nematode control agents can be created. We discuss recent advances in our understanding of nematodes and nematophagous microorganisms, with an emphasis on molecular mechanisms that infect nematodes with nematophagous microorganisms and on nematode safety from pathogenic attacks. Finally, we addressed numerous key areas for future research and development, including possible approaches to the application of our recent expertise in the development of successful biocontrol strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ab Rahman SFS, Singh E, Pieterse CM, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Google Scholar 

  • Abbasi MW, Ahmed N, Zaki MJ, Shuakat SS, Khan D (2014) Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant (Solanum melongena L.) and induced biochemical changes. Plant Soil 375(1–2):159–173

    CAS  Google Scholar 

  • Abbasi MW, Marium T, Khan MQ, Zaki MJ (2017) Assessment of extracellular metabolites from Bacillus species against root-knot nematodes and root-infecting fungi in Abelmoschus esculentus (L.) Moench. Pak J Bot 49(S1):289–294

    CAS  Google Scholar 

  • Abd El-Rahman SS, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol Plant 36(2):343–354

    CAS  Google Scholar 

  • Abd-Elgawad MM (2016) Comments on the use of biocontrol agents against plant-parasitic nematodes. Int J PharmTech Res 9(12):352–359

    Google Scholar 

  • Abd-Elgawad MMM (2020) Plant-parasitic nematodes and their biocontrol agents: current status and future vistas. In: Ansari RA et al (eds) Management of phytonematodes: recent advances and future challenges. https://doi.org/10.1007/978-981-15-4087-5_8

  • Abd-Elgawad MM, Kabeil SA (2012) Biological control of Meloidogyne incognita by Trichoderma harzianum and Serratia marcescens and their related enzymatic changes in tomato roots. Afr J Biotechnol 11:16247–16252

    CAS  Google Scholar 

  • Absmanner B, Stadler R, Hammes UZ (2013) Phloem development in nematode induced feeding sites, the implications of auxin and cytokinin. Front Plant Sci 4:241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adam M, Heuer H, Hallmann J (2014) Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS ONE 9(2):e90402

    PubMed  PubMed Central  Google Scholar 

  • Afolami SO (2000) Suggestions for the improvement of current methods of studying and reporting resistance to root-knot nematodes. Int J Nematol 10(1):94–100

    Google Scholar 

  • Ahmed S (2019) Bacillus cereus a potential strain infested cereal cyst nematode (Heterodera avenae). Pak J Nematol 37:53–61

    Google Scholar 

  • Alban R, Guerrero R, Toro M (2013) Interactions between a root knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica). Am J Plant Sci 4(7):19–23

    Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61

    PubMed  Google Scholar 

  • Aly AA, Mohamed HI, Mansour MTM, Omar RM (2013) Suppression of powdery mildew on flax by foliar application of essential oils. J Phytopathol 161(6):376–381

    Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI (2017) Association of increase in some biochemical components with flax resistance to powdery mildew. Gesunde Pflanzen 69(1):47–52

    CAS  Google Scholar 

  • Ansari RA, Mahmood I (2017) Determination of disease incidence caused by Meloidogyne spp. and or Fusarium udum on pigeonpea in Aligarh district: a survey. Trends Biosci 10(24):5239–5243

    Google Scholar 

  • Ansari RA, Mahmood I (2017a) Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci Hortic 226:1–9

    CAS  Google Scholar 

  • Ansari RA, Mahmood I (2019) Plant health under biotic stress: volume 1: organic strategies. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5

    Book  Google Scholar 

  • Ansari RA, Mahmood I (2019) Plant health under biotic stress: volume 2: microbial interactions. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4

    Book  Google Scholar 

  • Archana NH, Reji Rani OP (2018) Potential of the natural biopolymers, chitin and chitosan in root-knot nematode Meloidogyneincognita (kafoid and white) chitwood management. Indian J Nematol 48(1):6–12

    Google Scholar 

  • Ashraf MS, Khan TA (2010) Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch Phytopathol Plant Prot 43:609–614

    Google Scholar 

  • Ashry NA, Ghonaim MM, Mohamed HI, Mogazy AM (2018) Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm. Plant Physiol Biochem 130:224–234

    CAS  PubMed  Google Scholar 

  • Askary TH, Martinelli PRP (2015) Biocontrol agents of phytonematodes. CAB International, Wallingford, p 470

    Google Scholar 

  • Atibalentja N, Noel GR, Domier LL (2000) Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis. Int J Syst Evol Microbiol 50(2):605–613

    CAS  PubMed  Google Scholar 

  • B’Chir MM (1984) Étude de l’action des champignons prédateurs sur divers nématodes du sol en microscopie électronique à balayage (SEM). Revue Nematol 7(1):29–34

    Google Scholar 

  • Babatola JO, Omotade MA (1990) Chemical control of nematode pests of cowpea. J Crop Prot 13:131–134

    Google Scholar 

  • Baheti BL, Dodwadiya M, Bhati SS (2017) Eco-friendly management of maize cyst nematode, Heterodera zeae on sweet corn (Zea mays L. saccharata). J Entomol Zool Stud 5:989–993

    Google Scholar 

  • Bajaj HK, Dabur KR (2000) Cyperus deformis, a new host record of rice root-knot nematode Meloidogyne graminicola. Indian J Nematol 30:256

    Google Scholar 

  • BalaesT TC (2016) Basidiomycetes as potential biocontrol agents against nematodes. Rom Biotechnol Lett 21:11185–11193

    Google Scholar 

  • Balogh J, Tunlid A, Rosen S (2003) Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 39:128–135

    CAS  PubMed  Google Scholar 

  • Bartlem DG, Jones MGK, Hammes UZ (2014) Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. J Exp Bot 65:1789–1798

    CAS  PubMed  Google Scholar 

  • Basyony AG, Abo-Zaid GA (2018) Biocontrol of the root-knot nematode, Meloidogyne incognita, using an eco-friendly formulation from Bacillus subtilis, lab and greenhouse studies. Egypt J Biol Pest Control 28:87

    Google Scholar 

  • Bekal S, Borneman J, Springer MS, Giblin-Davis RM, Becker JO (2001) Phenotypic and molecular analysis of a Pasteuria strain parasitic to the sting nematode. J Nematol 33(2–3):110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berg RH, Fester T, Taylor CG (2008) Development of the root-knot nematode feeding cell. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism. Springer, Berlin, pp 115–152

    Google Scholar 

  • Bharali A, Bhagawati B, Uday K (2019) Bio-efficacy of native bioagents and biofertilizers for the management of root-knot nematode Meloidogyne incognita infecting black gram Vigna mungo. Int J Curr Microbiol Appl Sci 8(2):1484–1501

    CAS  Google Scholar 

  • Bhattacharya C, Dasgupta MK, Mukherjee B (2012) Population behaviour of Meloidogyne incognita in soil and roots of tea in Tripura, India. Nematol Medit 40:45–50

    Google Scholar 

  • Bhosle BB, Sehgal M, Puri SN, Das S (2004) Prevalence of phytophagous nematodes in rhizosphere of okra (Abelmoschus esculentus L. Moench) in Parbhani District, Maharashtra, India. Indian J Nematol 34:56–59

    Google Scholar 

  • Bird DM, Opperman CH, Davies KG (2003) Interactions between bacteria and plant-parasitic nematodes: now and then. Int J Parasitol 33(11):1269–1276

    CAS  PubMed  Google Scholar 

  • Bird D, Opperman C, Williamson V (2009) Plant infection by root-knot nematode. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism. Springer, Berlin, pp 1–13

    Google Scholar 

  • Blaxter ML, Robertson WM (1998) The cuticle. In: Perry RN, Wright DJ (eds) The physiology and biochemistry of free-living and plant-parasitic nematodes. CABI, Wallingford, pp 25–48

    Google Scholar 

  • Blyuss KB, Fatehi F, Tsygankova VA, Biliavska LO, Iutynska GO, Yemets AI, Blume YB (2019) RNAi-based biocontrol of wheat nematodes using natural poly-component biostimulants. Front Plant Sci 2019:10

    Google Scholar 

  • Brahma U, Borah A (2016) Management of Meloidogyne incognita on pea with bioagents and organic amendment. Indian J Nematol 46:58–61

    Google Scholar 

  • Brand D, Roussos S, Pandey A, Zilioli PC, Pohl J, Soccol CR (2004) Development of a bionematicide with Paecilomyceslilacinus to control Meloidogyne incognita. Appl Biochem Biotechnol 118(1–3):81–88

    CAS  PubMed  Google Scholar 

  • Bridge J, Luc M, Sikora RA (2005) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CABI Publishing, Oxfordshire

    Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In: Pesticides in the modern world: pesticides use and management, margarita stoytcheva. IntechOpen, pp 273–302, https://doi.org/10.5772/17184

  • Cayrol JC, Djian-Caporalino C, Panchaud-Mattei E (1992) La luttebiologiquecontre les nématodesphytoparasites

  • Chandel YS, Kumar S, Jain RK, Vashisth S (2010) An analysis of nematode problems in green house cultivation in Himachal Pradesh and avoidable losses due to Meloidogyne incognitain tomato. Indian J Nematol 40:198–203

    Google Scholar 

  • Charles L, Carbone I, Davies KG, Bird D, Burke M, Kerry BR, Opperman CH (2005) Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci. J Bacteriol 187(16):5700–5708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chelinho S, Maleita CMN, Francisco R, Braga MEM, da Cunha MJM, Abrantes I, Sousa JP (2017) Toxicity of the bionematicide 1, 4-naphthoquinone on non-target soil organisms. Chemosphere 181:579–588

    CAS  PubMed  Google Scholar 

  • Chen ZX, Dickson D (1998) Review of Pasteuria penetrans: Biology, ecology, and biological control potential. J Nematol 30(3):313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Hsu C, Tsai P, Ho Y, Lin N (2001) Heterotrimeric G-protein and signal transduction in the nematode-trapping fungus Arthrobotrys dactyloides. Planta 212:858–863

    CAS  PubMed  Google Scholar 

  • Choudhury BN, Rahman MF, Bora A (2004) Diversity of nematodes in four districts of Assam. Indian J Nematol 34:222–224

    Google Scholar 

  • Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Protect 30(10):1251–1262

    Google Scholar 

  • Davies KG (2009) Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host Meloidogyne spp. Adv Parasitol 68:211–245

    PubMed  Google Scholar 

  • Davies KG, Rowe J, Manzanilla-Lopez R, Opperman CH (2011) Re-evaluation of the life-cycle of the nematode-parasitic bacterium Pasteuria penetrans in root-knot nematodes, Meloidogyne spp. Nematology 13:825–835

    Google Scholar 

  • Davis EL, Haegeman A, Kikuchi T (2011) Degradation of the plant cell wall by nematodes. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Cham, pp 255–272

    Google Scholar 

  • de Freitas Soares FE, Sufiate BL, de Queiroz JH (2018) Nematophagous fungi: far beyond the endoparasite, predator and ovicidal groups. Agric Nat Resour 52(1):1–8

    Google Scholar 

  • Degenkolb T, Vilcinskas A (2016) Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl Microbiol Biotechnol 100(9):3799–3812

    CAS  PubMed  Google Scholar 

  • Deng X, Tian Y, Niu Q, Xu X, Shi H et al (2013) The ComP-ComA quorum system is essential for “Trojan horse” like pathogenesis in Bacillus nematocida. PLoS ONE 8:e76920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devi TS, Mahanta B, Borah A (2016) Comparative efficacy of Glomus fasciculatum, Trichoderma harzianum, carbofuran and carbendazim in management of Meloidogyne incognita and Rhizoctonia solani disease complex on brinjal. Indian J Nematol 46:161–164

    Google Scholar 

  • Dollfus RP (1946) Parasites (animaux et végétaux) des helminthes. P. Lechevalier, Paris

    Google Scholar 

  • Dong JY, Zhou Y, Li R, Zhou W, Li L, Zhu Y, Huang R, Zhang KQ (2006) New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS Microbiol Lett 264:65–69

    CAS  PubMed  Google Scholar 

  • Dong H, Zhou XG, Wang J, Xu Y, Lu P (2015) Myrothecium verrucaria strain X-16, a novel parasitic fungus to Meloidogyne hapla. Biol Control 83:7e12

    Google Scholar 

  • Dos Anjos ECT, Cavalcante UMT, Gonçalves DMC, Pedrosa EMR, dos Santos VF, Maia LC (2010) Interactions between an arbuscular mycorrhizal fungus (Scutellospora heterogama) and the root-knot nematode (Meloidogyne incognita) on sweet passion fruit (Passiflraalata). Braz Arch Biol Technol 53:801–809

    Google Scholar 

  • Ebert D, Rainey P, Embley TM, Scholz D (1996) Development, life cycle, ultrastructure and phylogenetic position of Pasteuria ramosa Metchnikoff 1888: rediscovery of an obligate endoparasite of Daphnia magna Straus. Philos Trans R Soc Lond Ser B Biol Sci 351(1348):1689–1701

    Google Scholar 

  • El-Eslamboly AASA, Abd El-Wanis MM, Amin AW (2019) Algal application as a biological control method of root-knot nematode Meloidogyne incognita on cucumber under protected culture conditions and its impact on yield and fruit quality. Egypt J Biol Pest Control 29:18

    Google Scholar 

  • Elling AA (2013) Major emerging problems with minor Meloidogyne species. Phytopathology 103:1092–1102

    PubMed  Google Scholar 

  • El-Nagdi WMA, Youssef MMA (2004) Soaking faba bean seed in some bio-agents as prophylactic treatment for controlling Meloidogyne incognita root–knot nematode infection. J Pest Sci 77:75–78

    Google Scholar 

  • El-Nagdi WMA, Abd-El-Khair H, Soliman GM, Ameen HH, El-Sayed GM (2019) Application of protoplast fusants of Bacillus licheniformis and Pseudomonas aeruginosa on Meloidogyne incognita in tomato and eggplant. Middle East J Appl Sci 9:622–629

    Google Scholar 

  • Escobar C, Barcala M, Cabrera J, Fenoll C (2015) Overview of root-knot nematodes and giant cells. Adv Bot Res 73:1–32

    Google Scholar 

  • Faske TR, Starr JL (2006) Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to abamectin. J Nematol 38:240–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fatima S, Anjum T (2017) Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Front Plant Sci 8:848

    PubMed  PubMed Central  Google Scholar 

  • Feinbaum RL, Urbach JM, Liberati NT, Djonovic S, Adonizio A et al (2012) Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLOS Pathog 8:e1002813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmesser J, Edwards DI, Epps JM, Heald CM, Jenkins WR, Johnson HJB, Lear CW, McBeth CW, Nigh EL, Perry VG (1971) Estimated crop losses from plant-parasitic nematodes in the United States. Comm. Crop losses. Special publication No. 1.Soc. Nematologists, Hyattsville, Maryland

  • Feyisa B, Lencho A, Selvaraj T, Getaneh G (2015) Evaluation of some botanicals and Trichoderma harzianum for the management of tomato root-knot Nematode (Meloidogyne incognita (Kofoid and White) Chitwood. Adv Crop Sci Technol 4:201

    Google Scholar 

  • Forghani F, Hajihassani A (2020) Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Front Plant Sci 11:1125

    PubMed  PubMed Central  Google Scholar 

  • Fourie H, Mc Donald AH, Steenkamp S, De Waele D (2017) Nematode pests of leguminous and oilseed crops. In: Nematology in South Africa: a view from the 21st century. Springer, Cham, pp 201–230

  • Fredrickson JK, ZacharaJM KDW, Kukkadapu RK, McKinley JP, Heald SM, Plymale AE (2004) Reduction of TcO4−by sediment-associated biogenic Fe (II). Geochim Cosmochim Acta 68(15):3171–3187

    CAS  Google Scholar 

  • Gan ZW, Yang JK, Tao N, Yu ZF, Zhang KQ (2007) Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). J Microbiol 45:422–430

    CAS  PubMed  Google Scholar 

  • Gan ZW, Yang JK, Tao N, Liang LM, Mi QL, Li J, Zhang KQ (2007) Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Appl Microbiol Biotechnol 76:1309–1317

    CAS  PubMed  Google Scholar 

  • Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X (2016) Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep 6:28756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gogoi D, Mahanta B (2013) Comparative efficacy of Glomus fasciculatum, Trichoderma harzianum, carbofuran and carbendazim in management of Meloidogyne incognita and Rhizoctonia solani disease complex on French bean. Ann Pl Prot Sci 21:172–175

    Google Scholar 

  • Goswami BK, Mittal A (2004) Management of root-knot nematode infecting tomato by Trichoderma viride and Paecilomyces lilacinus. Indian Phytopathol 57:235–236

    Google Scholar 

  • Goswami BK, Pandey RK, Rathour KS, Bhattacharya C, Singh L (2006) Integrated application of some compatible biocontrol agents along with mustard oil seed cake and furadan on Meloidogyne incognita infecting tomato plants. J Zhejiang Univ Sci 7:873–875

    CAS  Google Scholar 

  • Gowda LK, Marie MAM (2014) Role of quorum-sensing molecules in infections caused by Gram negative bacteria and host cell response. Rev Med Microbiol 25:66–70

    Google Scholar 

  • Gowda TM, Rai AB, Singh B (2017) Technical bulletin No. 76. IIVR, Varanasi, p 32

    Google Scholar 

  • Haegeman A, Mantelin S, Jones JT, Gheysen G (2012) Functional roles of effectors of plant-parasitic nematodes. Gene 492(1):19–31

    CAS  PubMed  Google Scholar 

  • Hajieghrari B, Torabi-Giglou M, Mohammadi MR, Davari M (2008) Biological potantial of some Iranian Trichoderma isolates in the control of soil borne plant pathogenic fungi. Afr J Biotechnol 7(8):967–972

    Google Scholar 

  • Hallmann J, Buck H, Rau F, Daub M, Schütze W, Grosch R, Schlathölter M (2009) Chancen und Grenzen der Biofumigation für die Bekämpfung pflanzenparasitärer Nematoden

  • Hallmann J, Davies KG, Sikora R (2009) Biological control using microbial pathogens, endophytes and antagonists. In: PerryRN, Moens M, Starr JL (eds) Book chapter: root-knot nematodes. pp 380–411

  • Hamid M, SiddiquiI A, Shahid Shaukat S (2003) Improvement of Pseudomonas fluorescens CHA0 biocontrol activity against root-knot nematode by the addition of ammonium molybdate. Lett Appl Microbiol 36:239–244

    CAS  PubMed  Google Scholar 

  • Haseeb A, Kumar V (2006) Management of Meloidogyne incognitaFusarium solani disease complex in brinjal by biological control agents and organic additives. Ann Plant Protect Sci 14:519–521

    Google Scholar 

  • Hol WG, Cook R (2005) An overview of arbuscular mycorrhizal fungi–nematode interactions. Basic Appl Ecol 6(6):489–503

    Google Scholar 

  • Hsueh YP, Mahanti P, Schroeder FC, Sternberg PW (2013) Nematode trapping fungi eavesdrop on nematode pheromones. Curr Biol 23:83–86

    CAS  PubMed  Google Scholar 

  • Huang X, Zhao N, Zhang K (2004) Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Res Microbiol 155(10):811–816

    CAS  PubMed  Google Scholar 

  • Huang X-W, Niu Q-H, Zhou W, Zhang K-Q (2005) Bacillus nematocida sp. nov., a novel bacterial strain with nematotoxic activity isolated from soil in Yunnan, China. Syst Appl Microbiol 28:323–327

    CAS  PubMed  Google Scholar 

  • Iatsenko I, Corton C, Pickard DJ, Dougan G, Sommer RJ (2014) Draft genome sequence of highly nematicidal Bacillus thuringiensis DB27. Genome A 2:e00101-e114

    PubMed  PubMed Central  Google Scholar 

  • Jain RK, Mathur KN, Singh RV (2007) Estimation of losses due to plant parasitic nematodes on different crops in India. Indian J Nematol 37:219–220

    Google Scholar 

  • Jamal Q, Cho JY, Moon JH, Munir S, Anees M, Kim KY (2017) Identification for the First Time of Cyclo (d-Pro-l-Leu) Produced by Bacillus amyloliquefaciens Y1 as a Nematocide for Control of Meloidogyne incognita. Molecules 22(11):1839

  • Jatala P (1986) Biological control of plant-parasitic nematodes. Annu Rev Phytopathol 24(1):453–489

    Google Scholar 

  • Jiang X, Xiang M, Liu X (2017) Nematode-trapping fungi. Microbiol Spectr 5(1):28128072

    Google Scholar 

  • Jiang C, Fan Z, Li Z, Niu D, Li Y, Zheng M, Wang Q, Jin H, Guo J (2020) Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. tomato DC3000 by suppressing MiR472 and activating CNLs-mediated basal immunity in Arabidopsis. Mol Plant Pathol 21:854–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14(9):946–961

    PubMed  PubMed Central  Google Scholar 

  • Karuri HW, Olago D, Neilson R, Mararo E, Villinger J (2017) A survey of root knot nematodes and resistance to Meloidogyne incognita in sweet potato varieties from Kenyan fields. Crop Protect 92:114–121

    Google Scholar 

  • Kaur H, Kaur H, Kumari N (2010) Plant parasitic nematodes associated with banana crops (Musa AAA) in district Patiala, Punjab, India. Trends Biosci 3:147–148

    Google Scholar 

  • Kaur T, Jasrotia S, Ohri P, Manhas RK (2016) Evaluation of in vitro and in vivo nematicidal potential of a multifunctional streptomycete, Streptomyces hydrogenans strain DH16 against Meloidogyne incognita. Microbiol Res 192:247–252

    PubMed  Google Scholar 

  • Kenney E, Eleftherianos I (2016) Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture. Int J Parasitol 46(1):13–19

    PubMed  Google Scholar 

  • Khan ML (2000) Occurrence of root-knot nematode (Meloidogyne incognita) and other plant parasitic species on Kiwi fruit (Actinidia delicious Chev.) in Himachal Pradesh. Indian J Nematol 30:245

    Google Scholar 

  • Khan AA, Khan MW (1990) Infestation, distribution pattern and identification of root-knot nematodes associated with vegetable crops in the district of Meerut division in Uttar Pradesh. Indian J Nematol 45:67–75

    Google Scholar 

  • Khan MR, Pal AK (2001) Plant parasitic nematodes associated with tuberose (Polianthes tuberosa L.) in West Bengal. Ann Pl Protec Sci 9:357–359

    Google Scholar 

  • Khan MR, Mohiddin FA, EjazMN KMM (2012) Management of root-knot disease in eggplant through the application of biocontrol fungi and dry neem leaves. Turkish J Biol 36(2):161–169

    Google Scholar 

  • Khan MR, Pandit BT, Pal S, Mahata B, Mondal P (2012) Infestation of root knot nematode (Meloidogyne) in different crops of West Bengal, India. In: Khan MR, Jha S, Sen C, Banerjee H, Biswas T (eds) Book of abstracts of the international symposium on food security dilemma: plant health and climate change issues. Kalyani, Nadia, p 95

  • Khan A, Iqbal M, Hussain S (2014) Organic control of phytonematodes with Pleurotus species. Pak J Nematol 32:155–161

    Google Scholar 

  • Khan MR, Mohidin FA, Khan U, Ahamad F (2016) Native Pseudomonas spp. suppressed the root-knot nematode in in vitro and in vivo and promoted the nodulation and grain yield in the field grown mungbean. Biol Control 101:159–168

    Google Scholar 

  • Khaosaad T, García-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39(3):727–734

    CAS  Google Scholar 

  • Kokalis-Burelle N, Mahaffee WF, Rodriguez-Kabana R, Kloepper JW, Bowen KL (2002) Effects of switchgrass (Panicum virgatum) rotations with peanut (Arachis hypogaea L.) on nematode populations and soil microflora. J Nematol 34(2):98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Jain RK, Bajaj HK (2008) Occurrence and identification of populations of root-knot nematodes (Meloidogyne spp.) from Haryana State. Indian J Nematol 38:141–145

    Google Scholar 

  • Kumar S, Chauhan PS, Agrawal L, Raj R, Srivastava A, Gupta S et al (2016) Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of cucumber mosaic virus. PLoS ONE 11:e0149980

    PubMed  PubMed Central  Google Scholar 

  • Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova D, Khairullin R, Aliniaeifard S (2017) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol Biochem 121:80–88

    CAS  PubMed  Google Scholar 

  • Lee YS, Kim KY (2016) Antagonistic potential of Bacillus pumilus L1 against root-Knot nematode, Meloidogyne arenaria. J Phytopathol 164(1):29–39

    CAS  Google Scholar 

  • Li X, Wei J, Tan A, Aroian RV (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5:455–464

    CAS  PubMed  Google Scholar 

  • Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Zhang KQ (2015) Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol 53:67–95

    CAS  PubMed  Google Scholar 

  • Liang L, Meng Z, Ye F, Yang J, Liu S et al (2010) The crystal structures of two cuticle-degrading proteases from nematophagous fungi and their contribution to infection against nematodes. FASEB J 24:1391–1400

    CAS  PubMed  Google Scholar 

  • Liang L, Wu H, Liu Z, Shen R, Gao H et al (2013) Proteomic and transcriptional analyses of Arthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence against nematodes. Appl Microbiol Biotechnol 97:8683–8692

    CAS  PubMed  Google Scholar 

  • Lima FS, Correa VR, Nogueira SR, Santos PR (2017) Nematodes affecting soybean and sustainable practices for their management. In: Book: Soybean–the basis of yield, biomass and productivity, pp 95–110

  • Liu K, Zhang W, Lai Y, Xiang M, Wang X et al (2014) Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genom 15:114

    Google Scholar 

  • Lopez-Llorca LV (1990) Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can J Microbiol 36:530–537

    CAS  Google Scholar 

  • Luo H, Xiong J, Zhou Q, Xia L, Yu Z (2013) The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans. Appl Microbiol Biot 97:10135–10142

    CAS  Google Scholar 

  • Lysek H, Krajci D (1987) Penetration of ovicidal fungus Verticillium chlamydosporium through the Ascaris lumbricoides eggshells. Folia Parasitol 34:57–60

    CAS  Google Scholar 

  • Mahajan-Miklos S, Tan M-W, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa–Caenorhabditis elegans pathogenesismodel. Cell 96:47–56

    CAS  PubMed  Google Scholar 

  • Mazzuchelli RCL, Mazzuchelli EHL, de Araujo FF (2020) Efficiency of Bacillus subtilis for root-knot and lesion nematodes management in sugarcane. Biol Control 143:104185

    Google Scholar 

  • Meerupati T, Andersson KM, Friman E, Kumar D, Tunlid A, Ahren D (2013) Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLOS Genet 9:e1003909

    PubMed  PubMed Central  Google Scholar 

  • Meher HC, Sharma SB, Singh G (2003) Genetic polymorphism in four geographically diverse Meloidogyne incognita populations in India. Ann Pl Protect Sci 11:96–100

    Google Scholar 

  • Mendoza AR, Kiewnick S, Sikora RA (2008) In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci Technol 18(4):377–389

    Google Scholar 

  • Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S et al (2018) Plant growth promoting Rhizobacteria (PGPR): a potential alternative tool for nematodes biocontrol. Biocatal Agric Biotechnol 17:119–128

    Google Scholar 

  • Mi QL, Yang JK, Ye FP, Gan ZW, Wu CW, Niu XM, Zou CG, Zhang KQ (2010) Cloning and overexpression of Pochonia chlamydosporia chitinase gene pcchi44, a potential virulence factor in infection against nematodes. Process Biochem 45:810–814

    CAS  Google Scholar 

  • Mnif I, Ghribi D (2015) Potential of bacterial derived biopesticides in pest management. Crop Protect 77:52–64

    Google Scholar 

  • Mohamed HI, Abd-El Hameed AG (2014) Molecular and biochemical markers of some Vicia faba L. genotype in response to storage insect pests infestation. J Plant Inter 9(1):618–626

    CAS  Google Scholar 

  • Mohamed HI, Mohammed AHMA, Mogazy AM (2016) Effect of plant defense elicitors on soybean (Glycine max L.) growth, photosynthetic pigments, osmolyts and lipid components in response to cotton worm (Spodoptera littoralis) infestation. Bangladesh J Bot 45(3):597–604

    Google Scholar 

  • Mohamed HI, El-Beltagi HS, Aly AA, Latif HH (2018) The role of systemic and non systemic fungicides on the physiological and biochemical parameters in Gossypium hirsutum plant, implications for defense responses. Frese Environ Bull 27(12):8585–8593

    CAS  Google Scholar 

  • Mohammed S, Saedy M, Enan M, Ibrahim NE, Ghareeb A, Moustafa S (2008) Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. J Cell Mol Biol 7:57–66

    Google Scholar 

  • Mohan S, Fould S, Davies K (2001) The interaction between the gelatin-binding domain of fibronectin and the attachment of Pasteuria penetrans endospores to nematode cuticle. Parasitology 123:271–276

    CAS  PubMed  Google Scholar 

  • Moosavi MR, Zare R (2015) Factors affecting commercial success of biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB Int, Wallingford, pp 423–445

    Google Scholar 

  • Mostafa FAM, Khalil AE, Nour El-Deen AH, IbrahimDS, (2018) The role of Bacillus megaterium and other bio-agents in controlling root-knot nematodes infecting sugar beet under field conditions. Egypt J Biol Pest Control 28:66

    Google Scholar 

  • Muthulakshmi M, Kumar S, Subramanian S, Anita B (2012) Compatibility of Pochonia chlamydosporia with other biocontrol agents and carbofuran. J Biopesticides 5:243–245

    Google Scholar 

  • Narasimhamurthy HB, Ravindra H, Sehgal M (2017a) Management of rice rootknot nematode, Meloidogyne graminicola. Int J Pure Appl Biosci 5:268–276

    Google Scholar 

  • Narasimhamurthy HB, Ravindra H, Sehgal M, Ekabote SD, Ganapathi G (2017b) Management of rice root-knot nematode, Meloidogyne graminicola. J Entomol Zool Stud 5:1433–1439

    Google Scholar 

  • Narayana R, Nisha MS, Sheela MS, Umamaheswaran K (2012) Record of root-knot nematode Meloidogyne incognita infesting cabbage in Kerala. Indian J Nematol 42:197–198

    Google Scholar 

  • Nisha MS, Narayana R, Sheela MS (2012) Occurrence of root knot nematode, M. incognita in carrot from Kerala. Indian J Nematol 42(2):196–197

    Google Scholar 

  • Niu QH, Huang XW, Tian BY, Yang JK, Liu J, ZhangL ZKQ (2005) Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor. Appl Microbiol Biotechnol 69:722–730

    Google Scholar 

  • Niu Q, Huang X, Zhang L, Xu J, Yang D et al (2010) ATrojan horse mechanism of bacterial pathogenesis against nematodes. Proc Natl Acad Sci USA 107:16631–16636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noel GR, Atibalentja N, Domier LL (2005) Emended description of Pasteuria nishizawae. Int J Syst Evol Microbiol 55:1681–1685

    CAS  PubMed  Google Scholar 

  • Nordbring-Hertz B, Mattiasson B (1979) Action of a nematode-trapping fungus shows lectin-mediated host–microorganism interaction. Nature 281:477–479

    CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agri Sci 144:31

    Google Scholar 

  • Onkendi EM, Kariuki GM, Marais M, Moleleki LN (2014) The threat of root-knot nematodes (Meloidogyne spp.) in Africa: a review. Plant Pathol 63(4):727–737

    Google Scholar 

  • Parihar K, Rehman B, Ganai MA, Asif M, Siddiqui MA (2015) Role of oil cakes and Pochonia chlamydosporia for the management of Meloidogyne javanica attacking Solanum melongena L. J Pl Path and Microbiol Spec Issue 6:12–20

    Google Scholar 

  • Perry R, Moens M (2011) Introduction to plant-parasitic nematodes; modes of parasitism. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Cham, pp 3–20

    Google Scholar 

  • Prakob W, Nguen-Hom J, Jaimasit P, Silapapongpri S, Thanunchai J, Chaisuk P (2009) Biological control of lettuce root knot disease by use of Pseudomonas aeruginosa, Bacillus subtilis and Paecilomyces lilacinus. J Agric Technol 5(1):179–191

    Google Scholar 

  • Prasad SSV, Tilak KVBR, Gollakota RG (1972) Role of Bacillus thuringiensis var. thuringiensis on the larval survivability and egg hatching of Meloidogyne. spp. the causative agent of root-knot disease. J Invertebr Pathol 20:377–378

    Google Scholar 

  • Radwan MA (2007) Comparative effects of culture filtrate of soil-borne fungi on mortality and infectivity of juveniles of Meloidogyne incognita. Indian J Nematol 37(2):109–114

    Google Scholar 

  • Rahul S, Chandrashekhar P, Hemant B, Chandrakant N, Laxmikant S, Satish P (2014) Nematicidal activity of microbial pigment from Serratia marcescens. Nat Prod Res 28:1399–1404

    CAS  PubMed  Google Scholar 

  • Rashad FM, Fathy HM, El-Zayat AS, Elghonaimy AM (2015) Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol Res 175:34–47

    CAS  PubMed  Google Scholar 

  • Rathour KS, Dubey J, Ganguly S (2010) Documentation of plant parasitic and beneficial soil nematodes and their communities in Madhya Pradesh, India. Indian J Nematol 40:66–73

    Google Scholar 

  • Ravichandra NG (2008) Plant nematology. I. K. International Pvt Ltd, New Delhi

    Google Scholar 

  • Ravichandra NG, Krishnappa K (2004) Prevalence and distribution of phytoparasitic nematodes associated with major vegetables crops in Mandya District, Karnataka. Ind J Nematol 34(1): 113–116

  • Rehman B, Ganai MA, Parihar K, Siddiqui MA, Usman I (2012) Management of root-knot nematode, Meloidogyne incognita affecting chickpea (Cicer arietinum) for sustainable production. Biosci Int 1(1):01–05

    Google Scholar 

  • Reitz M, Rudolph K, Schröder I, Homann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Environ Microbiol 66:3515–3518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rich JR, Brito JA, Kaur R, Ferrell JA (2008) Weed species as host of Meloidogyne. Nematropica 39:157–185

    Google Scholar 

  • Robinson A (2002) Host finding by plant-parasitic nematodes. In: Lewis EE, Campbell J, Sukhdeo M (eds) The behavioral ecology of parasites. CABI Publ, Wallingford

    Google Scholar 

  • Rosas-García NM (2009) Biopesticide production from Bacillus thuringiensis: an environmentally friendly alternative. Recent Patents Biotechnol 3(1):28–36

    Google Scholar 

  • Sahu R, Chandra P, Poddar AN (2011) Community analysis of plant parasitic nematodes prevalent in vegetable crops in district Durg of Chhattisgarh, India. Res J Parasitol 6:83–89

    Google Scholar 

  • Salvioli A, Bonfante P (2013) Systems biology and “omics” tools: a cooperation for next-generation mycorrhizal studies. Plant Sci 203:107–114

    PubMed  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting 8 rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    CAS  PubMed  Google Scholar 

  • Schenck S, Chase TJ, Rosenzweig WD, Pramer D (1980) Collagenase production by nematode-trapping fungi. Appl Environ Microbiol 40:567–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sehgal M, Somasekhara Y, Ravichandra NG, Ravindra H, JainRK SHR (2012) An outbreak of rice-root knot nematode, Meloidogyne graminicola in Shivamogga, Karnataka, India. Indian J Nematol 42:102

    Google Scholar 

  • Shamalie BVT, Fonseka RM, Rajapaksha RGAS (2011) Effect of Trichoderma viride and carbofuran (Curator®) on management of root-knot nematodes and growth parameters of gotukola (Centella asiatica L.). Trop Agric Res 23:61–69

    Google Scholar 

  • Sharf R, Abbasi A, Akhtar A (2014a) Combined effect of biofertilizers and fertilizer in the management of Meloidogyne incognita and also on the growth of red kidney bean (Phaseolus vulgaris). Int J Plant Pathology 5:1–11

    Google Scholar 

  • Sharf R, Shiekh H, Syed A, Akhtar A, Robab MI (2014b) Interaction between Meloidogyne incognita and Pochonia chlamydosporia and their effects on the growth of Phaseolus vulgaris. Archiv Phytopath Pl Prot 47:622–630

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technol 69(2):167–179

    CAS  Google Scholar 

  • Siddiqui IA, Shahid Shaukat S (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623

    CAS  Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode, Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK (2009a) Occurrence of root-knot nematode, Meloidogyne incognita on carrot in Jammu. Indian J Nematol 39:245

    Google Scholar 

  • Singh VK (2009b) Root-knot nematode, Meloidogyne javanica on citrus in Jammu. Indian J Nematol 39:240

    Google Scholar 

  • Singh VK, Singh VB, Zalpuri L (2012a) Survey, pathogenic effect and management of root-knot nematode, Meloidogyne incognita on okra. Indian J Nematol 42:161–168

    Google Scholar 

  • Singh R, Divya S, Awasthi A, Kalra A (2012b) Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (patchouli) Benth. World J Microbiol Biotechnol 28(1):323–333

    PubMed  Google Scholar 

  • Singh S, Singh B, Singh AP (2015) Nematodes: a threat to sustainability of agriculture. Procedia Environ Sci 29:215–216

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326(1–2):3–20

    CAS  Google Scholar 

  • Sohrabi E, Maafi ZT, Panahi P, Barroti S (2015) First report of northern root-knot nematode M. hapla parasitic on oaks Quercus brantii and Q. infectoria in Iran. J Nematol 47(1):86–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel Y, Mor M, Sharon E (1996) Attachment of Pasteuria penetrans endospores to the surface of Meloidogyne javanica second-stage juveniles. J Nematol 28:328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Zhao Y, Zhou J, Feng H, Jiang D, Zhang KQ, Yang J (2015) Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biol Rev Camb Philos Soc 31:371–378

    Google Scholar 

  • Subedi P, Gattoni K, Liu W, Lawrence KS, Park SW (2020) Current utility of plant growth-promoting rhizobacteria as biological control agents towards plant-parasitic nematodes. Plants 9:1167. https://doi.org/10.3390/plants9091167

    Article  CAS  PubMed Central  Google Scholar 

  • Sudheer MJ, Kalaiarasan P, Senthamarai M, Prabhu S, Rao GMV, Priya P, Rani S (2008) Diversity and community structure of major plant parasitic nematodes in selected districts of Andhra Pradesh India. Indian J Nematol 38(1):68–74

    Google Scholar 

  • Sun MH, Gao L, Shi YX, Li BJ, Liu XZ (2006) Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. J Invertebr Pathol 93:22–28

    PubMed  Google Scholar 

  • Suresh P, Poornima K, Nakkeeran S, Kalaiarasan P, Vijayakumar RM (2019) Isolation and characterization of the causal organism of wilt in guava (Psidium guajava L). J Pharma Phytochem 8(5):1231–1235

    Google Scholar 

  • Suresh P, PoornimaK KP, Nakkeeran S, Vijayakumar RM (2019) Characterization of Guava Root Knot Nematode, Meloidogyne enterolobii occurring in Tamil Nadu, India. Int J Curr Microbiol Appl Sci 8(9):1987–1998

    CAS  Google Scholar 

  • Tailor AJ, Joshi BH (2014) Harnessing plant growth promoting rhizobacteria beyond nature: a review. J Plant Nutri 37(9):1534–1571

    CAS  Google Scholar 

  • Tan M, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96:715–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teillet A, Dybal K, Kerry BR, Miller AJ, Curtis RHC, Hedden P (2013) Transcriptional changes of the root-knot nematode Meloidogyneincognita in response to Arabidopsis thaliana root signals. PLoS ONE 8:61259

    Google Scholar 

  • Terefe M, Tefera T, Sakhuja PK (2009) Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J Invert Pathol 100(2):94–99

    Google Scholar 

  • Teymouri M, Akhtari J, Karkhane M, Marzban A (2016) Assessment of phosphate solubilization activity of rhizobacteria in mangrove forest. Biocata Agric Biotechnol 5:168–172

    Google Scholar 

  • Tiwari S, Pandey S, Chauhan PS, Pandey R (2017) Biocontrol agents in co-inoculation manages root knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood] and enhances essential oil content in Ocimum basilicum L. Ind Crops Prod 97:292–301

    Google Scholar 

  • Tosi S, Annovazzi L, Tosi I, Iadrola P, Caretta G (2001) Collagenase production in an antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia 153:157–162

    Google Scholar 

  • Tranier MS, Pognant-Gros J, Quiroz RDLC, González CNA, Mateille T, Roussos S (2014) Commercial biological control agents targeted against plant-parasitic root-knot nematodes. Braz Arch Biol Technol 57(6):831–841

    Google Scholar 

  • Usta C (2013) Microorganisms in biological pest control—a review (bacterial toxin application and effect of environmental factors). Curr Prog Biol Res 287–317

  • Van Damme V, Hoedekie A, Viaene N (2005) Long-term efficacy of Pochonia chlamydosporia for management of Meloidogyne javanica in glasshouse crops. Nematol 7:727–736

    Google Scholar 

  • Verdejo-Lucas S, Sorribas FJ, Ornat C, Galeano M (2003) Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathol 52(4):521–528

    Google Scholar 

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Let 8(2):214–217

    Google Scholar 

  • Viljoen JJ, Labuschagne N, Fourie H, Sikora RA (2019) Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria. Trop Plant Pathol 44(3):284–291

    Google Scholar 

  • Von Mende N (1997) Invasion and migration behaviour of sedentary nematodes. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant-nematode interactions. Springer, Cham, pp 51–64

    Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Pani B, De Waele D, Elsen A (2012) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354(1–2):335–345

    CAS  Google Scholar 

  • Vovlas N, Rapoport HF, Díaz RMJ, Castillo P, Nematologia B, Nazionale C (2005) Differences in feeding sites induced by root-knot nematodes Meloidogyne spp in Chickpea. Phytopathology 95:368–375

    PubMed  Google Scholar 

  • Waliullah MIS (2005) Nematodes associated with kiwi (Actinidia deliceous Chev) in Kashmir Valley, India. Indian J Nematol 35:227

    Google Scholar 

  • Wang C, St. Leger R (2007) The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6:808–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wani AH (2015) Plant growth-promoting rhizobacteria as biocontrol agents of phytonematodes. Biocontrol Agents Phytonematodes, p 339

  • Wei L, Shao Y, Wan J, Feng H, Zhu H, Huang H, Berg G (2014) Isolation and characterization of a rhizobacterial antagonist of root-knot nematodes. PLoS ONE 9(1):e85988

    PubMed  PubMed Central  Google Scholar 

  • Wharton DA (1980) Nematode eggshells. Parasitology 81:447–463

    CAS  PubMed  Google Scholar 

  • Wieczorek K, Elashry A, Quentin M, Grundler FMW, Favery B, Seifert GJ et al (2014) A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root-knot nematodes. Mol Plant Microbe Interact 27:901–912

    CAS  PubMed  Google Scholar 

  • Wilson MJ, Jackson TA (2013) Progress in the commercialisation of bionematicides. BioControl 58:715–722

    CAS  Google Scholar 

  • Wyss U, Grundler FMW, Munch A (1992) The parasitic behavior of secondstage juveniles in Meloidogyne incognita in roots of Arabidopsisthaliana. Nematologica 38:98–111

    Google Scholar 

  • Xiang N, Lawrence K, Donald P (2018) Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: A review. J Phytopathol 166:449–458

    Google Scholar 

  • Xiong J, Zhou Q, Luo H, Xia L, Li L, Sun M, Yu Z (2015) Systemic nematicidal activity and biocontrol efficacy of Bacillus firmus against the root-knot nematode Meloidogyne incognita. World J Microbiol Biotechnol 31(4):661–667

    CAS  PubMed  Google Scholar 

  • Yang J, Wang L, Ji X, Feng Y, Li X et al (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLOS Pathog 7:e1002179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LY, Wang JD, Zhang J, Xue CY, Zhang H, Wang XJ, Xiang WS (2013) New nemadectin congeners with acaricidal and nematocidal activity from Streptomyces microflavus neau3 Y-3. Bioorg Med Chem Lett 23:5710–5713

    CAS  PubMed  Google Scholar 

  • Yu Z, Luo H, Xiong J, Zhou Q, Xia L et al (2014) Bacillus thuringiensis Cry6A exhibits nematicidal activity to Caenorhabditis elegans bre mutants and synergistic activity with Cry5B to C. elegans. Lett Appl Microbiol 58:511–519

    CAS  PubMed  Google Scholar 

  • Yu Z, Xiong J, Zhou Q, Luo H, Hu S, Xia L, Yu Z (2015) The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. Jinvertebrate Pathol 125:73–80

    CAS  Google Scholar 

  • Zaborin A, Romanowski K, Gerdes S, Holbrook C, Lepine F et al (2009) Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. Proc Natl Acad Sci USA 106:6327–6332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zenith NG, Joymati L, Ronibala KH (2013) Studies on the association of plant parasitic nematodes associated with root-knot nematode infecting potato (Solanum tuberosum). Trends Biosci 6:180–181

    Google Scholar 

  • Zhang J, Li Y, Yuan H, Sun B, Li H (2016) Biological control of the cereal cyst nematode (Heterodera filipjevi) by Achromobacter xylosoxidans isolate 09X01 and Bacillus cereus isolate 09B18. Biol Control 92:1–6

    Google Scholar 

  • Zhao LL, Wei W, Kang L, Sun JH (2007) Chemotaxis of the pinewood nematode, Bursaphelenchus xylophilus, to volatiles associated with host pine, Pinus masso-niana, and its vector Monochamus alter-natus. J Chem Ecol 33:1207–1216

    CAS  PubMed  Google Scholar 

  • Zhou L, Yuen G, Wang Y, Wei L, Ji G (2016) Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Protect 84:8–13

    CAS  Google Scholar 

  • Zuckerman BM, Esnard J (1994) Biological control of plant nematodes current status and hypothesis. Japan J Nematol 24:1–13

    Google Scholar 

Download references

Acknowledgement

The authors are in extreme thankful to the chairperson, Department of Botany, AMU, Aligarh and Faculty of Education Ain Shams university for providing necessary facilities during work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

GA, A K, AA K, AA, HIM: conceptualization, writing original data preparation, reviewing and editing.

Corresponding author

Correspondence to Heba I. Mohhamad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, G., Khan, A., Khan, A.A. et al. Biological control: a novel strategy for the control of the plant parasitic nematodes. Antonie van Leeuwenhoek 114, 885–912 (2021). https://doi.org/10.1007/s10482-021-01577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01577-9

Keywords

Navigation