Skip to main content
Log in

Characterisation of hydrocarbon degradation, biosurfactant production, and biofilm formation in Serratia sp. Tan611: a new strain isolated from industrially contaminated environment in Algeria

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel bacterial strain was isolated from industrially contaminated waste water. In the presence of crude oil, this strain was shown to reduce the rate of total petroleum hydrocarbons (TPH) up to 97.10% in 24 h. This bacterium was subsequently identified by 16S rRNA gene sequence analysis and affiliated to the Serratia genus by the RDP classifier. Its genome was sequenced and annotated, and genes coding for catechol 1,2 dioxygenase and naphthalene 1,2-dioxygenase system involved in aromatic hydrocarbon catabolism, and LadA-type monooxygenases involved in alkane degradation, were identified. Gas Chromatography-Mass Spectrometry (GC–MS) analysis of crude oil after biological treatment showed that Serratia sp. Tan611 strain was able to degrade n-alkanes (from C13 to C25). This bacterium was also shown to produce a biosurfactant, the emulsification index (E24) reaching 43.47% and 65.22%, against vegetable and crude oil, respectively. Finally, the formation of a biofilm was increased in the presence of crude oil. These observations make Serratia sp. Tan611 a good candidate for hydrocarbon bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The complete sequences of the Serratia Tan611 genome have been deposited in DDBJ/EMBL/GenBank under BioProject PRJEB40361 and assembly accession number GCA_905188235.

Code availability

Not applicable.

References

  • Abena MTB, Chen G, Chen Z, Zheng X, Li S, Li T, Zhong W (2020) Microbial diversity changes and enrichment of potential petroleum hydrocarbon degraders in crude oil-, diesel-, and gasoline-contaminated soil. 3 Biotech 10(2):42

    Article  Google Scholar 

  • Andres J, Arsene-Ploetze F, Barbe V, Brochier-Armanet C, Cleiss-Arnold J, Coppee JY, Dillies MA, Geist L, Joublin A, Koechler S (2013) Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium Rhizobium sp. NT-26. Genome BiolEvol 5(5):934–953

    Article  Google Scholar 

  • Bertin P, Terao E, Lee EH, Lejeune P, Colson C, Danchin A, Collatz E (1994) The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J Bacteriol 176(17):5537–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M (2005) Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J ApplMicrobiol 98(2):456–463

    CAS  Google Scholar 

  • Boonmak C, Takahashi Y, Morikawa M (2014) Cloning and expression of three ladA-type alkane monooxygenase genes from an extremely thermophilic alkane-degrading bacterium Geobacillus thermoleovorans B23. Extremophiles 18(3):515–523

    Article  CAS  PubMed  Google Scholar 

  • Borah D, Agarwal K, Khataniar A, Konwar D, Gogoi SB, Kallel M (2019) A newly isolated strain of Serratia sp. from an oil spillage site of Assam shows excellent bioremediation potential. 3 Biotech 9(7):283

    Article  PubMed  PubMed Central  Google Scholar 

  • Brito EMS, Guyoneaud R, Goñi-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MAC, Wasserman JCA, Duran R (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay. Brazil Res Microbiol 157(8):752–762

    CAS  PubMed  Google Scholar 

  • Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. MicrobBiotechnol 2(6):587

    CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10(1):421

    Article  Google Scholar 

  • Charrié-Duhaut A, Lemoine S, Adam P, Connan J, Albrecht P (2000) Abiotic oxidation of petroleum bitumens under natural conditions. Org Geochem 31(10):977–1003

    Article  Google Scholar 

  • Chaudhary DK, Kim J (2017) Flavobacterium olei sp. nov., a novel psychrotolerant bacterium isolated from oil-contaminated soil. Int J SystEvolMicrobiol 67(7):2211–2218

    CAS  Google Scholar 

  • Chen W, Li J, Sun X, Min J, Hu X (2017) High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species CN-3. IntBiodeterior Biodegradation 118:110–118

    Article  CAS  Google Scholar 

  • UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515

    Article  Google Scholar 

  • Coulon F, Pelletier E, Gourhant L, Delille D (2005) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58(10):1439–1448

    Article  CAS  PubMed  Google Scholar 

  • De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C (2018) NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34(15):2666–2669

    Article  PubMed  PubMed Central  Google Scholar 

  • Deepak R, Jayapradha R (2015) Lipopeptidebiosurfactant from Bacillus thuringiensis pak2310: a potential antagonist against Fusarium oxysporum. J Mycol Med 25(1):e15–e24

    Article  CAS  PubMed  Google Scholar 

  • Dong W, He C, Li Y, Huang C, Chen F, Ma Y (2017) Complete genome sequence of a versatile hydrocarbon degrader, Pseudomonas aeruginosa DN1 isolated from petroleum-contaminated soil. Gene Rep 7:123–126

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. ApplMicrobiolBiotechnol 97(23):9909–9921

    CAS  Google Scholar 

  • Freitas F, Alves VD, Carvalheira M, Costa N, Oliveira R, Reis MAM (2009) Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. CarbohydrPolym 78(3):549–556

    CAS  Google Scholar 

  • Gaur VK, Regar RK, Dhiman N, Gautam K, Srivastava JK, Patnaik S, Kamthan M, Manickam N (2019) Biosynthesis and characterization of sophorolipidbiosurfactant by Candida spp.: application as food emulsifier and antibacterial agent. BioresourTechnol 285:121314

    Article  CAS  Google Scholar 

  • Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemati S, Kouhsari E, Sadeghifard N, Maleki A, Omidi N, Mahdavi Z, Pakzad I (2020) Sub-minimum inhibitory concentrations of biocides induced biofilm formation in Pseudomonas aeruginosa. New Microbes New Infect 38:100794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Cheng T, Liu J (2018) A novel Serratia sp. ZS6 isolate derived from petroleum sludge secretes biosurfactant and lipase in medium with olive oil as sole carbon source. AMB Express 8(1):1–12

    Article  Google Scholar 

  • Huang Y, Zhou H, Zheng G, Li Y, Xie Q, You S, Zhang C (2020) Isolation and characterization of biosurfactant-producing Serratia marcescens ZCF25 from oil sludge and application to bioremediation. Environ Sci Pollut Res Int

  • Isaac P, Alessandrello MJ, Macedo AJ, Estévez MC, Ferrero MA (2017) Pre-exposition to polycyclic aromatic hydrocarbons (PAHs) enhance biofilm formation and hydrocarbon removal by native multi-species consortium. J Environ ChemEng 5(2):1372–1378

    Article  CAS  Google Scholar 

  • Isaac P, Martínez FL, Bourguignon N, Sánchez LA, Ferrero MA (2015) Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. IntBiodeteriorBiodegrad 101:23–31

    CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshlaf E, Ball AS (2017) Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol 3(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Q, Li W, Wang B, Yu Z, Shao Z (2012) Complete genome sequence of the pyrene-degrading bacterium Cycloclasticus sp. strain P1. J Bacteriol 194(23):6677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ławniczak Ł, Woźniak-Karczewska M, Loibner AP, Heipieper HJ, Chrzanowski Ł (2020) Microbial degradation of hydrocarbons—Basic principles for bioremediation: a review. Molecules 25(4):856

    Article  PubMed Central  Google Scholar 

  • Maalej H, Hmidet N, Boisset C, Bayma E, Heyraud A, Nasri M (2016) Rheological and emulsifying properties of a gel-like exopolysaccharide produced by Pseudomonas stutzeri AS22. Food Hydrocoll 5:634–647

    Article  Google Scholar 

  • Mahanty B, Pakshirajan K, Dasu VV (2006) Production and properties of a biosurfactant applied to polycyclic aromatic hydrocarbon solubilization. ApplBiochemBiotechnol 134(2):129–141

    CAS  Google Scholar 

  • Marzan LW, Sultana T, Hasan MM, Mina SA, Islam MR, Rakibuzzaman AGM, Khan MIH (2017) Characterization of furnace oil bioremediation potential of hydrocarbonoclastic bacteria isolated from petroleum contaminated sites of the Sundarbans, Bangladesh. J Genet EngBiotechnol 15(1):103–113

    Google Scholar 

  • Médigue C, Calteau A, Cruveiller S, Gachet M, Gautreau G, Josso A, Lajus A, Langlois J, Pereira H, Planel R (2019) MicroScope—an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data. Brief Bioinform 20(4):1071–1084

    Article  PubMed  Google Scholar 

  • Méndez V, Fuentes S, Morgante V, Hernández M, González M, Moore E, Seeger M (2017) Novel hydrocarbonoclastic metal-tolerant Acinetobacter and Pseudomonas strains from Aconcagua river oil-polluted soil. J Soil Sci Plant Nutr 17(4):1074–1087

    Article  Google Scholar 

  • Morales-Guzmán G, Ferrera-Cerrato R, del Carmen R-C, Torres-Bustillos LG, Arteaga-Garibay RI, Mendoza-López MR, Esquivel-Cote R, Alarcón A (2017) Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Appl Soil Ecol 121:127–134

    Article  Google Scholar 

  • Niknezhad SV, Najafpour-Darzi G, Morowvat MH, Ghasemi Y (2018) Eexopolysaccharide production of Pantoea sp. BCCS 001 GH: physical characterizations, emulsification, and antioxidant activities. Int J BiolMacromol 118:1103–1111

    Article  CAS  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. CurrOpinBiotechnol 13(3):249–252

    CAS  Google Scholar 

  • Sathishkumar M, Binupriya AR, Baik S, Yun S (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean (Weinh) 36(1):92–96

    CAS  Google Scholar 

  • Sidkey NM, Mohamed HF, Elkhouly HI (2016) Evaluation of different screening methods for biosurfactant producers isolated from contaminated Egyptian samples grown on industrial olive oil processing waste. Microbiol Res J Int 1–19

  • Sumiardi A, Soetarto ES, Susilaningsih D (2018) Screening and characterization of biosurfactant produced by bacterial consortium in degrading polycyclic aromatic hydrocarbon compound. In: AIP Conf Proc, vol 2002, p 20001

  • Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10(8):1948–1963

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoSComputBiol 13(6):e1005595

    Google Scholar 

  • Xu C, Zang X, Hang X, Liu X, Yang H, Liu X, Jiang J (2017) Degradation of three monochlorobenzoate isomers by different bacteria isolated from a contaminated soil. IntBiodeteriorBiodegrad 120:192–202

    CAS  Google Scholar 

  • Zhuo C, Zhao Q, Xiao S (2014) The impact of spgM, rpfF, rmlA gene distribution on biofilm formation in Stenotrophomonas maltophilia. PLoS ONE 9(10):e108409

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work benefited from the financial support of the DMO/DMA project subsidized by the CNRS national program EC2CO-MicrobiEn. It was performed in collaboration with the GeT core facility, Toulouse, France (http://get.genotoul.fr), and was supported by France Génomique National infrastructure, funded as part of “Investissement d’avenir” program managed by Agence Nationale pour la Recherche (contract ANR-10-INBS-09). We are grateful to the Genoscope (Évry, France) for providing on-line access to MicroScope, the Microbial Genome Annotation and Analysis Platform (https://mage.genoscope.cns.fr/microscope/home/index.php), and the Algerian Ministry for Higher Education and Scientific Research for a scholarship to A. Semai.

Author information

Authors and Affiliations

Authors

Contributions

Annela Semai performed research and wrote the paper; Frédéric Plewniak performed research and wrote the paper, Armelle Charrié-Duhaut performed research and wrote the paper, Amalia Sayeh and Lisa Gil performed research, Céline Vandecasteele contributed new methods, Céline Lopez-Roques wrote the paper, Emmanuelle Leize-Wagner analyzed data, Farid Bensalah analyzed data, Philippe N. Bertin conceived study, analyzed data and wrote the paper.

Corresponding author

Correspondence to Philippe N. Bertin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors gave their consent to participate in this study.

Consent for publication

All authors gave their consent to publish results from this study and to be listed as a co-author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semai, A., Plewniak, F., Charrié-Duhaut, A. et al. Characterisation of hydrocarbon degradation, biosurfactant production, and biofilm formation in Serratia sp. Tan611: a new strain isolated from industrially contaminated environment in Algeria. Antonie van Leeuwenhoek 114, 411–424 (2021). https://doi.org/10.1007/s10482-021-01527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01527-5

Keywords

Navigation