Skip to main content
Log in

The effects of the Ncw2 protein of Saccharomyces cerevisiae on the positioning of chitin in response to cell wall damage

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The recently described NCW2 gene encodes a protein that is assumed to be located in the cell wall (CW). This protein was proposed to participate in the repair of CW damages induced by polyhexamethylene biguanide (PHMB). However, much of the information on the biological function(s) of Ncw2p still remains unclear. In view of this, this study seeks to extend the analysis of this gene in light of the way its protein functions in the Cell Wall Integrity (CWI) mechanism. Deletion of the NCW2 gene led to constitutive overexpression of some key CWI genes and increased chitin deposition in the walls of cells exposed to PHMB. This means the lack of Ncw2p might activate a compensatory mechanism that upregulates glucan CWI genes for cell protection by stiffening the CW. This condition seems to alleviate the response through the HOG pathway and makes cells sensitive to osmotic stress. However, Ncw2p may not have been directly involved in tolerance to osmotic stress itself. The results obtained definitely place the NCW2 gene in the list of CWI genes of S. cerevisiae and indicate that its protein has an auxiliary function in the maintenance of the glucan/chitin balance and ensuring the correct structure of the yeast cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Austriaco NR Jr (1996) Review to bud until death: the genetics of ageing in the yeast Saccharomyces. Yeast 12:623–630

    Article  CAS  PubMed  Google Scholar 

  • Bermejo C, Rodríguez E, García R, Rodríguez-Peña JM, Rodríguez de la Concepción ML, Rivas C, Arias P, Nombela C, Posas F, Arroyo J (2008) The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. Mol Biol Cell 19:1113–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broxton P, Woodcock PM, Heatley F, Gilbert P (1984) Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J Appl Bacteriol 57:115–124

    Article  CAS  PubMed  Google Scholar 

  • Bulawa CE, Slater M, Cabib E, Au-Young J, Sburlati A, Adair WL Jr, Robbins PW (1986) The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46:213–225

    Article  CAS  PubMed  Google Scholar 

  • Cabib E (2009) Two novel techniques for determination of polysaccharide cross-links show that Crh1p and Crh2p attach chitin to both beta(1–6)- and beta(1–3)glucan in the Saccharomyces cerevisiae cell wall. Eukaryot Cell 8:1626–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabib E, Bowers B, Sburlati A, Silverman SJ (1988) Fungal cell wall synthesis: the construction of a biological structure. Microbiol Sci 5:370–375

    CAS  PubMed  Google Scholar 

  • Cabib E, Silverman SJ, Shaw JA (1992) Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J Gen Microbiol 138:97–102

    Article  CAS  PubMed  Google Scholar 

  • Dague E, Bitar R, Ranchon H, Durand F, Yken HM, Francois JM (2010) An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 27:673–684

    Article  CAS  PubMed  Google Scholar 

  • de Lucena RM, Elsztein C, Simões DA, de Morais Jr MA (2012) Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J Appl Microbiol 113:629–640

    Article  PubMed  CAS  Google Scholar 

  • Elorza MV, Rico H, Sentandreu R (1983) Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol 129:1577–1582

    CAS  PubMed  Google Scholar 

  • Elsztein C, Menezes JAS, de Morais Jr MA (2008) Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process. J Ind Microbiol Biotechnol 35:967–973

    Article  CAS  PubMed  Google Scholar 

  • Elsztein C, de Lucena RM, de Morais Jr MA (2011) The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1. BMC Mol Biol 19:12–38

    Google Scholar 

  • Elsztein C, de Lima RCP, de Barros Pita W, de Morais Jr MA (2016) NCW2, a gene involved in the tolerance to polyhexamethylene biguanide (PHMB), may help in the organisation of b-1,3-glucan structure of Saccharomyces cerevisiae cell wall. Curr Microbiol 73:341–345

    Article  CAS  PubMed  Google Scholar 

  • García R, Botet J, Rodríguez-Peña JM, Bermejo C, Ribas JC, Revuelta JL, Nombela C, Arroyo J (2015) Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genom 16:683

    Article  CAS  Google Scholar 

  • García-Rodriguez LJ, Durán A, Roncero C (2000) Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions. J Bacteriol 182:2428–2437

    Article  PubMed  PubMed Central  Google Scholar 

  • Gow NAR, Latge JP, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016

    Article  PubMed  Google Scholar 

  • Heilmann CJ, Sorgo AG, Mohammadi S, Sosinska GJ, de Koster CG, Brul S, de Koning LJ, Klis FM (2013) Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryot Cell 12:254–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho B, Baryshnikova A, Brown GW (2018) Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Syst 6:192–205

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Mann P, Brown NH, Tran LE, Shaw KJ, Hare RS, DiDomenico B (1994) Cloning and characterization of KNR4, a yeast gene involved in (1,3)-beta-glucan synthesis. Mol Cell Biol 14:1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  • Iwahashi H, Odani M, Ishidou E, Kitagawa E (2005) Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. FEBS Lett 579:2847–2852

    Article  CAS  PubMed  Google Scholar 

  • Kaehn K (2010) Polihexanide: a safe and highly effective biocide. Skin Pharmacol Physiol 23:7–16

    Article  CAS  PubMed  Google Scholar 

  • Kapteyn JC, Ram AF, Groos EM, Kollar R, Montijn RC, Van Den Ende H, Llobell A, Cabib E, Klis FM (1997) Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content. J Bacteriol 179:6279–6284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy BK, Austriaco NR Jr, Zhang J, Guarente L (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80:485–496

    Article  CAS  PubMed  Google Scholar 

  • Kock C, Dufrêne YF, Heinisch JJ (2015) Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains? Appl Environ Microbiol 81:806–811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuranda K, Leberre V, Sokol S, Palamarczyk G, François J (2006) Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 61:1147–1166

    Article  CAS  PubMed  Google Scholar 

  • Lee KK, Maccallum DM, Jacobsen MD, Walker LA, Odds FC, Gow NA, Munro CA (2012) Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob Agents Chemother 56:208–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesage G, Sdicu AM, Ménard P, Shapiro J, Hussein S, Bussey H (2004) Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167:35–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesage G, Shapiro J, Specht CA, Sdicu AM, Ménard P, Hussein S, Tong AH, Boone C, Bussey H (2005) An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae. BMC Genet 6:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levin DE (2005) Cell Wall integrity signalling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signalling pathway. Genetics 189:1145–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Yken H, Dagkessamanskaia A, Basmaji F, Lagorce A, Francois J (2003) The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae. Mol Microbiol 49:23–35

    Article  CAS  PubMed  Google Scholar 

  • Martin-Yken H, François JM, Zerbib D (2016) Knr4: a disordered hub protein at the heart of fungal cell wall signalling. Cell Microbiol 18:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Munro CA (2013) Chitin and glucan, the yin and yang of the fungal cell wall, implications for antifungal drug discovery and therapy. Adv Appl Microbiol 83:145–172

    Article  CAS  PubMed  Google Scholar 

  • Neubert P, Strahl S (2016) Protein O-mannosylation in the early secretory pathway. Curr Opin Cell Biol 41:100–108

    Article  CAS  PubMed  Google Scholar 

  • Philip B, Levin DE (2001) Wsc1 and Mid2 are cell surface sensors for cell wall integrity signalling that act through rom2, a guanine nucleotide exchange factor for Rho1. Mol Cel Biol 21:271–280

    Article  CAS  Google Scholar 

  • Popolo L, Gualtieri T, Ragni E (2001) The yeast cell-wall salvage pathway. Med Mycol 39:111–121

    Article  CAS  PubMed  Google Scholar 

  • Ram AF, Kapteyn JC, Montijn RC, Caro LH, Douwes JE, Baginsky W, Mazur P, van den Ende H, Klis FM (1998) Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of β-1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180:1418–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinoso-Martín C, Schüller C, Schuetzer-Muehlbauer M, Kuchler K (2003) The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signalling. Eukaryot Cell 2:1200–1210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ritch JJ, Davidson SM, Sheehan JJ, Austriaco N (2010) The Saccharomyces SUN gene, UTH1, is involved in cell wall biogenesis. FEMS Yeast Res 10:168–176

    Article  CAS  PubMed  Google Scholar 

  • Roemer T, Bussey H (1991) Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc Nat Acad Sci (USA) 88:11295–11299

    Article  CAS  PubMed Central  Google Scholar 

  • Roncero C, Durán A (1985) Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163:1180–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roncero C, Valdivieso MH, Ribas JC, Durán A (1988) Isolation and characterization of Saccharomyces cerevisiae mutants resistant to Calcofluor white. J Bacteriol 170:1950–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavone M, Formosa-Dague C, Elsztein C, Teste MA, Martin-Yken H, de Morais Jr MA, Dague E, François JM (2016) An atomic force microscopy study of yeast response to ethanol stress: evidence for a role of the plasma membrane in the nanomechanical properties of the cell walls. Appl Environ Microbiol 82:4789–4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima H, Yabuki N, Arisawa M, Hamada K, Kitada K (2000) Up-regulation of genes encoding glycosylphosphatidylinositol (GPI)-attached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae. Mol Gen Genom 264:64–74

    Article  CAS  Google Scholar 

  • Valiante V, Macheleidt J, Föge M, Brakhage AA (2015) The Aspergillus fumigatus cell wall integrity signalling pathway: drug target, compensatory pathways, and virulence. Front Microbiol 6:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow N (2008) Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Path 4:e1000040

    Article  CAS  Google Scholar 

  • Ziman M, Chuang JS, Schekman RW (1996) Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell 7:1909–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Andrea Harand, Federal University of Pernambuco (UFPE, Brazil) for allowing us to make use of fluorescence microscopy and to Laboratoire Pareva (Saint Martin de Crau, France) for kindly providing the PHMB. This work was supported with grants from the Brazilian funding agencies FACEPE (Project APQ-1452–2.01/10) and CNPq (Project 472533/2013–4) and by the research support program of the Federal University of Pernambuco (Project 23076.021846/2012–47). MGQ was granted a PhD scholarship by the CAPES agency [Coordinated Body for the Improvement of Higher Education Personnel] and CE was awarded a a post-doctoral fellowship by the PNPD/CAPES programme.

Author information

Authors and Affiliations

Authors

Contributions

MAMJ and CE designed the experiments. MGQ and CE carried out the experiments and analysed the data. MAMJ wrote the manuscript and MGQ and CE provided a critical review of the manuscript.

Corresponding author

Correspondence to Marcos Antonio de Morais Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queiroz, M.G., Elsztein, C. & de Morais, M.A. The effects of the Ncw2 protein of Saccharomyces cerevisiae on the positioning of chitin in response to cell wall damage. Antonie van Leeuwenhoek 113, 265–277 (2020). https://doi.org/10.1007/s10482-019-01335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01335-y

Keywords

Navigation