Lactobacillus jinshani sp. nov., isolated from solid-state vinegar culture of Zhenjiang aromatic vinegar

  • Yongjian YuEmail author
  • Xin Li
  • Junhong Zhang
  • Li-Juan Chai
  • Zhen-Ming Lu
  • Zheng-Hong XuEmail author
Original Paper


A novel Gram-stain-positive, non-motile, non-spore-forming, rod-shaped, facultatively anaerobic, designated strain HSLZ-75T, was isolated from the solid-state vinegar culture of Zhenjiang aromatic vinegar. Strain HSLZ-75T grew at 20–40 °C (optimum 35 °C), pH 3.0–5.0 (optimum pH 4.0) and 0–5% (w/v) NaCl (optimum 0%). Heterolactic fermentation characterised the metabolism of strain HSLZ-75T. d- and l-lactic acid were produced from glucose in a ratio of 91:9. The major cellular fatty acids ( > 10%) consisted of C16:0, C18:1ω9c, summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid and six unknown lipids. The cell wall was found to contain meso-diaminopimelic acid-type peptidoglycan. The 16S rRNA gene sequence of strain HSLZ-75T showed the highest similarity of 88.0% with Lactobacillus fructivorans DSM 20203T. Phylogenetic analysis indicated that strain HSLZ-75T belonged to family Lactobacillaceae and formed a distinct lineage with the type strain of Lactobacillus caviae. The complete genome of strain HSLZ-75T contained a circular chromosome of 1,616,430 bp with 1570 genes and 39.7 mol% G + C content. The average nucleotide identity values between strain HSLZ-75T and the reference type strains Lactobacillus fructivorans DSM 20203T and Lactobacillus rossiae DSM 15814T were 66.4% and 65.7%, respectively. On the basis of phenotypic, chemotaxonomic, phylogenetic and genotypic characteristics, strain HSLZ-75T should be classified as a novel species of the genus Lactobacillus in the family Lactobacillaceae of the order Lactobacillales, for which the name Lactobacillus jinshani sp. nov. is proposed. The type strain is HSLZ-75T ( = CICC 6269T = JCM 33270T).


Lactobacillus jinshani Zhenjiang aromatic vinegar Lactic acid bacteria 



We would like to express our gratitude to Prof. Henglin Cui for helpful discussions, are grateful to Prof. Aharon Oren (the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem) for the suggestions for the nomination in this study. This study was financially supported by the National key research and development program of China (No. 2018YFD0400401) and the Key research and development program of Zhenjiang (No. Y2017011).

Author contributions

YY, ZML and ZHX designed the experiments. XL, JZ and LJC conducted the experiments. XL, JZ, LJC and ZML analysed the results. YY, XL, JZ, LJC, ZML and ZHX prepared the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The article does not contain any studies related to human participants or animals.

Supplementary material

10482_2019_1316_MOESM1_ESM.docx (1.2 mb)
Supplementary file1 (DOCX 1188 kb)


  1. Cagno RD, Angelis MD, Cattonaro F, Gobbetti M (2015) Draft genome sequence of Lactobacillus rossiae DSM 15814T. J Bacteriol 194:5460–5461CrossRefGoogle Scholar
  2. Canchaya C, Claesson MJ, Fitzgerald GF, van Sinderen D, O’Toole PW (2006) Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology 152:3185–3196CrossRefPubMedGoogle Scholar
  3. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470CrossRefGoogle Scholar
  4. Collins MD, Farrow JAE, Phillips BA, Feresu S, Jones D (1987) Classification of Lactobacillus divergens, Lactobacillus piscicola, and some catalase-negative asporogenous, rod-shaped bacteria from poultry in a new genus, Carnobacterium. Int J Syst Bacteriol 37:310–316CrossRefGoogle Scholar
  5. Corsetti A, Settanni L, van Sinderen D, Felis GE, Dellaglio F, Gobbetti M (2005) Lactobacillus rossii sp. nov., isolated from wheat sourdough. Int J Syst Evol Microbiol 55:35–40CrossRefPubMedGoogle Scholar
  6. Dellaglio F, Trovatelli LD, Sarra PG (1981) DNA–DNA homology among representative strains of the genus Pediococcus. Zbl Bakt Hyg I Abt Orig C 2:140–150Google Scholar
  7. Drucker DB, Megson G, Harty DW, Riba I, Gaskell SJ (1995) Phospholipids of Lactobacillus spp. J Bacteriol 177:6304–6308CrossRefPubMedPubMedCentralGoogle Scholar
  8. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME, Leulier F, Gänzle M, Walter J (2017) Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 41:S27–S48CrossRefPubMedGoogle Scholar
  9. Ehrmann MA, Kröckel L, Lick S, Radmann P, Bantleon A, Vogel RF (2016) Lactobacillus insicii sp. nov. isolated from fermented raw meat. Int J Syst Evol Microbiol 66:236–242CrossRefPubMedGoogle Scholar
  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Franzmann PD, Höpfl P, Weiss N, Tindall BJ (1991) Psychrotrophic, lactic acid-producing bacteria from anoxic waters in Ace Lake, Antarctica; Carnobacterium funditum sp. nov. and Carnobacterium alterfunditum sp. nov. Arch Microbiol 156:255–262CrossRefPubMedGoogle Scholar
  13. Jöborn A, Dorsch M, Olsson JC, Westerdahl A, Kjelleberg S (1999) Carnobacterium inhibens sp. nov., isolated from the intestine of Atlantic salmon (Salmo salar). Int J Syst Bacteriol 49:1891–1898CrossRefPubMedGoogle Scholar
  14. Johnson MJ, Thatcher E, Cox ME (1995) Techniques for controlling variability in gram staining of obligate anaerobes. J Clin Microbiol 33:755–758PubMedPubMedCentralGoogle Scholar
  15. Kandler O (1970) Amino acid sequence of the murein and taxonomy of the genera Lactobacillus, Bifidobacterium, Leuconostoc, and Pediococcus. Int J Syst Bacteriol 20:491–507CrossRefGoogle Scholar
  16. Killer J, Pechar R, Svec P, Salmonová H, Svejstil R, Geigerová M, Rada V, Vlková E, Mekadim C (2017) Lactobacillus caviae sp. nov., an obligately heterofermentative bacterium isolated from the oral cavity of a guinea pig (Cavia aperea f. porcellus). Int J Syst Evol Microbiol 67:2903–2909CrossRefPubMedGoogle Scholar
  17. Kim J, Chun J, Han HU (2000) Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 50:1915–1919CrossRefPubMedGoogle Scholar
  18. Kim MS, Roh SW, Nam YD, Yoon JH, Bae JW (2009) Carnobacterium jeotgali sp. nov., isolated from a Korean traditional fermented food. Int J Syst Evol Microbiol 59:3168–3171CrossRefPubMedGoogle Scholar
  19. Kim HJ, Eom SJ, Park SJ, Cha CJ, Kim GB (2011) Lactobacillus alvi sp. nov., isolated from the intestinal tract of chicken. FEMS Microbiol Lett 323:83–87CrossRefPubMedGoogle Scholar
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefGoogle Scholar
  21. Kim HJ, Lee HJ, Lim B, Kim E, Kim HY, Suh M, Hur M (2018) Lactobacillus terrae sp. nov., a novel species isolated from soil samples in the Republic of Korea. Int J Syst Evol Microbiol 68:2906–2911CrossRefPubMedGoogle Scholar
  22. Kozaki M, Uchimura T, Okada S (1992) Experimental manual of lactic acid bacteria. Asakurasyoten, Tokyo, pp 29–72Google Scholar
  23. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  24. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18CrossRefPubMedPubMedCentralGoogle Scholar
  25. Meucci A, Zago M, Rossetti L, Fornasari ME, Bonvini B, Tidona F, Povolo M, Contarini G, Carminati D, Giraffa G (2015) Lactococcus hircilactis sp. nov. and Lactococcus laudensis sp. nov., isolated from milk. Int J Syst Evol Microbiol 65:2091–2096CrossRefPubMedGoogle Scholar
  26. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95CrossRefGoogle Scholar
  27. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaala A, Parletta JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  28. Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M, Yoshino M, Kamakura Y, Potacharoen W, Tanasupawat S, Tanaka N, Nakagawa Y, Suzuki K (2015) Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 65:2485–2490CrossRefPubMedGoogle Scholar
  29. Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285CrossRefPubMedGoogle Scholar
  30. Nam SH, Choi SH, Kang A, Li KS, Kim DW, Kim RN, Kim DS, Park HS (2012) Genome sequence of Lactobacillus fructivorans KCTC 3543. J Bacteriol 194:2111–2112CrossRefPubMedPubMedCentralGoogle Scholar
  31. Praet J, Meeus I, Cnockaert M, Houf K, Smagghe G, Vandamme P (2015) Novel lactic acid bacteria isolated from the bumble bee gut: Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov. Antonie van leeuwenhoke 107:1337–1349CrossRefGoogle Scholar
  32. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131CrossRefGoogle Scholar
  33. Rzhetsky A, Nei M (1992) A simple method for evaluating and testing minimum-evolution trees. Mol Biol Evol 9:945–967Google Scholar
  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  35. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. Microbial ID, Newark, DEGoogle Scholar
  36. Schumann P (2011) Peptidoglycan structure. Methods Microbiol 38:101–129CrossRefGoogle Scholar
  37. Sorokin DY (2005) Is there a limit for high-pH life? Int J Syst Evol Microbiol 55:1405–1406CrossRefPubMedGoogle Scholar
  38. Sukontasing S, Tanasupawat S, Moonmangmee S, Lee JS, Suzuki K (2007) Enterococcus camelliae sp. nov. isolated from fermented tea leaves in Thailand. Int J Syst Evol Microbiol 57:2151–2154CrossRefPubMedGoogle Scholar
  39. Tanasupawat S, Shida O, Okada S, Komagata K (2000) Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov. isolated from fermented fish in Thailand. Int J Syst Evol Microbiol 50:1479–1485CrossRefPubMedGoogle Scholar
  40. Tanasupawat S, Thongsanit J, Okada S, Komagata K (2002) Lactic acid bacteria isolated from soy sauce mash in Thailand. J Gen Appl Microbiol 48:201–209CrossRefPubMedGoogle Scholar
  41. Tanasupawat S, Pakdeeto A, Thawai C, Yukphan P, Okada S (2007) Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov. Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov. J Gen Appl Microbiol 53:7–15CrossRefPubMedGoogle Scholar
  42. Tanasupawat S, Sukontasing S, Lee JS (2008) Enterococcus thailandicus sp. nov. isolated from fermented sausage (‘mum’) in Thailand. Int J Syst Evol Microbiol 58:1630–1634CrossRefPubMedGoogle Scholar
  43. Tohno M, Kitahara M, Uegaki R, Lrisawa T, Ohkuma M, Tajima K (2013) Lactobacillus hokkaidonensis sp. nov. isolated from subarctic timothy grass (Phleum pratense L.) silage. Int J Syst Evol Microbiol 63:2526–2531CrossRefPubMedGoogle Scholar
  44. Wade ME, Strickland MT, Osborne JP, Edwards CG (2019) Role of Pediococcus in winemaking. Aust J Grape Wine R 25:7–24CrossRefGoogle Scholar
  45. Wang ZM, Lu ZM, Yu YJ, Li GQ, Shi JS, Xu ZH (2015) Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar. Food Microbiol 50:64–69CrossRefPubMedGoogle Scholar
  46. Wang ZM, Lu ZM, Shi JS, Xu ZH (2016) Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar. Sci Rep 6:26818CrossRefPubMedPubMedCentralGoogle Scholar
  47. Weiss N, Schillinger U, Laternser M, Kandler O (1981) Lactobacillus sharpeae sp. nov. and Lactobacillus agilis sp. nov., two new species of homofermentative, meso-diaminopimelic acid containing lactobacilli isolated from sewage. Zbl Bakt Hyg I Abt Orig C 2:242–253Google Scholar
  48. Weiss N, Schillinger U, Kandler O (1983) Lactobacillus trichodes, and Lactobacillus heterohiochii, subjective synonyms of Lactobacillus fructivorans. Syst Appl Microbiol 4:507–511CrossRefPubMedGoogle Scholar
  49. Wu LH, Lu ZM, Zhang XJ, Wang ZM, Yu YJ, Shi JS, Xu ZH (2017) Metagenomics reveals flavour metabolic network of cereal vinegar microbiota. Food Microbiol 62:23–31CrossRefPubMedGoogle Scholar
  50. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645CrossRefPubMedGoogle Scholar
  51. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zanoni P, Farrow JAE, Phillips BA, Collins MD (1987) Lactobacillus pentosus (Fred, Peterson and Anderson) sp. nov., nom. rev. Int J Syst Bacteriol 37:339–341CrossRefGoogle Scholar
  53. Zhang J, Fang F, Chen J, Du G (2014) The arginine deiminase pathway of koji bacteria is involved in ethyl carbamate precursor production in soy sauce. FEMS Microbiol Lett 358:91–97CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Jiangsu Hengshun Vinegar Industry Co., Ltd.ZhenjiangPeople’s Republic of China
  2. 2.National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  3. 3.Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations