Skip to main content
Log in

Streptomyces tibetensis sp. nov., an actinomycete isolated from the Tibetan Plateau

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel actinomycete, designated strain XZ 46T, was isolated from acid sandy soil collected from the Tibetan Plateau, China. Its taxonomic position was determined using a polyphasic approach. Strain XZ 46T shows the typical morphological and chemotaxonomic features of members of the genus Streptomyces: slightly yellow to brown substrate mycelia and grayish white to slightly yellow aerial hyphae forming cylindrical and spiny spores; meso-diaminopimelic acid in the cell wall peptidoglycan; MK-9(H8), MK-9(H4) and MK-9(H2) as predominant menaquinones; diphosphatidylglycerol, phospatidylethanolamine, phosphatidylglycerol and phosphatidylinositol as main polar lipids; and iso-C15:0, iso-C16:0 and anteiso-C15:0 as major cellular fatty acids. The G+C content of the draft genome sequence, consisting of 8,995,813 bp, is 71.23%. The16S rRNA gene sequence analysis indicated that strain XZ 46T shows high sequence similarity to Streptomyces luteogriseus NBRC 13402T as well as forming an independent lineage clade with it in phylogenetic trees. Multilocus sequence analysis (MLSA) of five housekeeping genes (atpD, gyrB, recA, rpoB and trpB) illustrated that Streptomyces hawaiiensis is also a very closely related taxon. However, DNA–DNA hybridization, MLSA evolutionary distance and phenotypic properties demonstrate that strain XZ 46T can be distinguished from these phylogenetically related Streptomyces species. Therefore, it is concluded that strain XZ 46T represents a novel species of the genus Streptomyces, for which the name Streptomyces tibetensis is sp. nov. proposed. The type strain is XZ 46T (= CGMCC 4.7579T = KCTC 49221T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Collee JG, Miles RS, Watt B (1996) Tests for identification of bacteria. In: Collee JG, Fraser AG, Marmion BP, Simmons A (eds) Practical medical microbiology, 14th edn. Churchill Livingstone, New York, pp 131–149

    Google Scholar 

  • Collins MD, Howarth OW, Grund E, Kroppenstedt RM (1987) Isolation and structural determination of new members of the vitamin K2 series in Nocardia brasiliensis. FEMS Microbiol Lett 41:35–39

    Article  CAS  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Sys Zool 20:406–416

    Article  Google Scholar 

  • Goodfellow M (1971) Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69:33–80

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Hayakawa M (2008) Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetologica 22:12–19

    Article  Google Scholar 

  • Hsu SC, Lockwood JL (1975) Powdered chitin agar as selective medium for enumeration of actinomycetes in water and soil. Appl Microbial 29:422–426

    CAS  Google Scholar 

  • Huss VA, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:1–11

    Article  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US Government Printing Office, Washington, DC

    Google Scholar 

  • Komagata K, Suzuki K (1988) Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger data sets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B, Vanncanneyt M, Swings J, Kim SB, Liu Z, Chun J, Tamura T, Oguchi A, Kikuchi T, Kikuchi H, Nishii T, Tsuji K, Yamaguchi Y, Tase A, Takahashi M, Sakane T, Suzuki KI, Hatano K (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101:73–104

    Article  CAS  PubMed  Google Scholar 

  • Labeda DP, Doroghazi JP, Ju K-S, Metcalf WW (2014) Taxonomic evaluation of Streptomyces albus and related species using multi-locus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov. Int J Syst Evol Microbiol 64:894–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labeda DP, Dunlap CA, Rong X, Huang Y, Doroghazi JR, Ju KS, Metcalf WW (2017) Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie Van Leeuwenhoek 110:563–583

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol 20:435–443

    CAS  Google Scholar 

  • Li Y, Li Y, Wang LW, Bao J (2018) Streptomyces dengpaensis sp. nov., an actinomycete isolated from desert soil. Int J Syst Evol Microbiol 68:3322–3326

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang J, Zhou YJ, Lin HW, Lu YH (2019) Streptomyces reniochalinae sp. nov. and Streptomyces diacarni sp. nov., from marine sponges. Int J Syst Evol Microbiol 69:99–104

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Deng Z, Liu T (2018) Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metab Eng 50:74–84

    Article  CAS  PubMed  Google Scholar 

  • Rong X, Huang Y (2012) Taxonomic evaluation of the Streptomyces hygroscopicus clade using multi-locus sequence analysis and DNA–DNA hybridization, validating the MLSA scheme for the systematics of the whole genus. Syst Appl Microbiol 35:7–18

    Article  CAS  PubMed  Google Scholar 

  • Röttig A, Atasayar E, Meier-Kolthoff JP, Spröer C, Schumann P, Schauer J, Steinbüchel A (2017) Streptomyces jeddahensis sp. nov., an oleaginous bacterium isolated from desert soil. Int J Syst Evol Microbiol 67(6):1676–1682

    Article  PubMed  Google Scholar 

  • Saeng-In P, Phongsopitanun W, Savarajara A, Tanasupawat S (2018) Streptomyces lichenis sp. nov., isolated from lichen. Int J Syst Evol Microbiol 68:3641–3646

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method or reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. MIDI Inc, Newark

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Shirling EB, Gottlieb D (1969) Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. Int J Syst Bacteriol 19:391–512

    Article  Google Scholar 

  • Tadashi A (1975) Culture media for actinomycetes. The Society for Actinomycetes, Tokyo

    Google Scholar 

  • Tindall BJ, Sikorski J, Smibert RM, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, et al. (eds) Methods for general and molecular microbiology, 3rd edn. ASM Press, Washington, DC, pp 330–393

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:464

    Google Scholar 

  • Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:237–243

    Article  Google Scholar 

  • Weiburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  Google Scholar 

  • Williams ST, Cross T (1971) Actinomycetes. Methods Microbiol 4:295–334

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Tang S, Chen X, Zhang L, Zhang G, Zhang W, Liu G, Chen T, Li S, Dyson P (2016) Streptomyces lacrimifluminis sp. nov., a novel actinobacterium that produces antibacterial compounds, isolated from soil. Int J Syst Evol Microbiol 66:4981–4986

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Tang S, Yang R, Chen X, Zhang D, Zhang W, Li S, Chen T, Liu G, Dyson P (2019) Streptomyces dangxiongensis sp. nov., isolated from soil of Qinghai-Tibet Plateau. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.003550

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to National Natural Science Foundation of China (Grant No. U1806222), Shandong Provincial Natural Science Joint Found With Universities and Scientific Research Institution (ZR2018LC001).

Author information

Authors and Affiliations

Authors

Contributions

JL and LW conducted the experiments. ZY and LL contributed to writing. YL was in charge of experimental expenditure.

Corresponding author

Correspondence to Yumei Li.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, L., Ye, Z. et al. Streptomyces tibetensis sp. nov., an actinomycete isolated from the Tibetan Plateau. Antonie van Leeuwenhoek 113, 33–41 (2020). https://doi.org/10.1007/s10482-019-01315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01315-2

Keywords

Navigation