Advertisement

Isolation, identification and characterisation of an emerging fish pathogen, Acinetobacter pittii, from diseased loach (Misgurnus anguillicaudatus) in China

  • Xu Wang
  • Jie Li
  • Xiaojuan Cao
  • Weimin Wang
  • Yi LuoEmail author
Original Paper
  • 52 Downloads

Abstract

Although members of the genus Acinetobacter have emerged as important nosocomial pathogens causing severe human infections, there are few reports about their occurrence as fish pathogens. In this study, five bacterial strains were isolated from diseased loach (Misgurnus anguillicaudatus) cultured in a farm in China. The diseased loach displayed shedding of skin mucus and many petechial haemorrhages all over the body. Based on sequence analyses of 16S rRNA and rpoB genes, the isolates were identified as Acinetobacter pittii. An experimental infection assay confirmed their pathogenicity to loach. The results of artificial infection in zebrafish (Barchydanio rerio) and nematode (Caenorhabditis elegans) suggested that, as well as loach, these A. pittii isolates are pathogenic and highly virulent to these organisms. Multilocus sequence typing analysis revealed that all the isolates belong to sequence type (ST) 839, which may be the dominant clone causing fish disease and exhibits a close phylogenetic relationship with ST396 from human clinical samples in Korea or Taiwan China. This is the first report demonstrating that A. pittii is an emerging causal agent of mass mortality in loach and poses significant risks to fish culturing besides causing human clinical infection worldwide.

Keywords

Acinetobacter pittii Fish pathogen Misgurnus anguillicaudatus Pathogenicity Multilocus sequence typing 

Notes

Acknowledgements

This work was supported by grants from the Natural Science Foundation of Hubei Province, China (2014CKB504) and the National Natural Science Foundation of China (31570078). We thank Prof. Lu Chengping and Prof. Liu Yongjie (Nanjing Agricultural University, Nanjing, China) for generously providing the A. hydrophila strain J-1. We also thank Prof. Dr. Sun (State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China) for generously providing C. elegans wild-type strain N2.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were conducted following the guidelines approved by the Institutional Animal Care and Use Committee of Huazhong Agricultural University (Ethical Approval No. HBAC20091138).

Supplementary material

10482_2019_1312_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3891 kb)

References

  1. Abayneh T, Colquhoun DJ, Sørum H (2012) Multi-locus sequence analysis (MLSA) of Edwardsiella tarda isolates from fish. Vet Microbiol 158:365–367.  https://doi.org/10.1016/j.vetmic.2012.03.006 CrossRefGoogle Scholar
  2. Bing XW, Yan BL, Zhang XJ, Qin L, Bi KR (2009) Phenotypic and molecular identification of pathogenic Vibrio cholerae isolated from Misgurnus anguillicaudatus. Oceanologia Et Limnologia Sinica 40:692–698.  https://doi.org/10.3321/j.issn:0029-814X.2009.06.004 (in Chinese) CrossRefGoogle Scholar
  3. Bird BH, Mazet JAK (2018) Detection of emerging zoonotic pathogens: an integrated one health approach. Annu Rev Anim Biosci 6:121–139.  https://doi.org/10.1146/annurev-animal-030117-014628 CrossRefPubMedGoogle Scholar
  4. Brown VR, Bowen RA, Bosco-Lauth AM (2018) Zoonotic pathogens from feral swine that pose a significant threat to public health. Transbound Emerg Dis 65:649–659.  https://doi.org/10.1111/tbed.12820 CrossRefPubMedGoogle Scholar
  5. Chen H, Lu C (1991) Study on the pathogen of epidemic septicemia occurred in cultured cyprinoid fishes in southeastern China. J Nanjing Agric Univ 14:87–91.  https://doi.org/10.7685/j.issn.1000-2030.1991.04.016 (in Chinese) CrossRefGoogle Scholar
  6. Chen PL, Wu CJ, Tsai PJ, Tang HJ, Chuang YC, Lee NY, Lee CC, Li CW, Li MC, Chen CC, Tsai HW, Ou CC, Chen CS, Ko WC (2014) Virulence diversity among bacteremic Aeromonas isolates: ex vivo, animal, and clinical evidences. PLoS ONE 9:e111213.  https://doi.org/10.1371/journal.pone.0111213 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chowdhury MBR, Wakabayashi H (1991) A study on Flexibacter columnaris infection in loach, Misgurnus anguillicaudatus (Bleeker, Günther). J Fish Dis 14:389–394.  https://doi.org/10.1111/j.1365-2761.1991.tb00837.x CrossRefGoogle Scholar
  8. Cosgaya C, Marí-Almirall M, Van Assche A, Fernández-Orth D, Mosqueda N, Telli M, Huys G, Higgins PG, Seifert H, Lievens B, Roca I, Vila J (2016) Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticusAcinetobacter baumannii complex mainly recovered from clinical samples in different countries. Int J Syst Evol Microbiol 66:4105–4111.  https://doi.org/10.1099/ijsem.0.001318 CrossRefPubMedGoogle Scholar
  9. Couillault C, Ewbank JJ (2002) Diverse bacteria are pathogens of Caenorhabditis elegans. Infect Immun 70:4705–4707.  https://doi.org/10.1128/IAI.70.8.4705-4707.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  10. De Vos D, Pirnay JP, Bilocq F, Jennes S, Verbeken G, Rose T, Keersebilck E, Bosmans P, Pieters T, Hing M, Heuninckx W, De Pauw F, Soentjens P, Merabishvili M, Deschaght P, Vaneechoutte M, Bogaerts P, Glupczynski Y, Pot B, van der Reijden TJ, Dijkshoorn L (2016) Molecular epidemiology and clinical impact of Acinetobacter calcoaceticus-baumannii complex in a Belgian Burn Wound Center. PLoS ONE 11:e0156237.  https://doi.org/10.1371/journal.pone.0156237 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S (2010) The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS ONE 5:e10034.  https://doi.org/10.1371/journal.pone.0010034 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dunlap CA, Rooney AP (2018) Acinetobacter dijkshoorniae is a later heterotypic synonym of Acinetobacter lactucae. Int J Syst Evol Microbiol 68:131–132.  https://doi.org/10.1099/ijsem.0.002470 CrossRefPubMedGoogle Scholar
  13. Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV, Murray BE, Calderwood SB, Ausubel FM (2001) A simple model host for identifying gram-positive virulence factors. Proc Natl Acad Sci USA 98:10892–10897.  https://doi.org/10.1073/pnas.191378698 CrossRefPubMedGoogle Scholar
  14. Gu T, Lu C, Chen H (1997) Acinetobacter baumannii a novel pathogen of acute epidemic in mandarin fish (Siniperca chuatsi). Microbiology 2:104–106 (in Chinese) Google Scholar
  15. Huang S, Cao X, Tian X (2016) Transcriptomic analysis of compromise between air-breathing and nutrient uptake of posterior intestine in loach (Misgurnus anguillicaudatus), an air-breathing fish. Mar Biotechnol (NY) 18:521–533.  https://doi.org/10.1007/s10126-016-9713-9 CrossRefGoogle Scholar
  16. Ibrahim AP, Gerner-Smidt P, Liesack W (1997) Phylogenetic relationship of the twenty-one DNA groups of the genus Acinetobacter as revealed by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 47:837–841.  https://doi.org/10.1099/00207713-47-3-837 CrossRefPubMedGoogle Scholar
  17. Jain AL, Harding CM, Assani K, Shrestha CL, Haga M, Leber A, Munson RS Jr, Kopp BT (2016) Characteristics of invasive Acinetobacter species isolates recovered in a pediatric academic center. BMC Infect Dis 16:346.  https://doi.org/10.1186/s12879-016-1678-9 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jun JW, Kim JH, Gomez DK, Choresca CH Jr, Han JE, Shin SP, Park SC (2010) Occurrence of tetracycline-resistant Aeromonas hydrophila infection in Korean cyprinid loach (Misgurnus anguillicaudatus). Afr J Microbiol Res 4:849–855.  https://doi.org/10.1016/j.enzmictec.2009.12.017 CrossRefGoogle Scholar
  19. Komura T, Yasui C, Miyamoto H, Nishikawa Y (2010) Caenorhabditis elegans as an alternative model host for Legionella pneumophila, and protective effects of Bifidobacterium infantis. Appl Environ Microbiol 76:4105–4108.  https://doi.org/10.1128/AEM.03021-09 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kozińska A, Paździor E, Pękala A, Niemczuk W (2014) Acinetobacter johnsonii and Acinetobacter lwoffii—the emerging fish pathogens. Bull Vet Inst Pulawy 58:193–199.  https://doi.org/10.2478/bvip-2014-0029 CrossRefGoogle Scholar
  21. Labrousse A, Chauvet S, Couillault C, Kurz CL, Ewbank JJ (2000) Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr Biol 10:1543–1545.  https://doi.org/10.1016/S0960-9822(00)00833-2 CrossRefPubMedGoogle Scholar
  22. Lee YC, Huang YT, Tan CK, Kuo YW, Liao CH, Lee PI, Hsueh PR (2011) Acinetobacter baumannii and Acinetobacter genospecies 13TU and 3 bacteraemia: comparison of clinical features, prognostic factors and outcomes. J Antimicrob Chemother 66:1839–1846.  https://doi.org/10.1093/jac/dkr200 CrossRefPubMedGoogle Scholar
  23. Lee MJ, Jang SJ, Li XM, Park G, Kook JK, Kim MJ, Chang YH, Shin JH, Kim SH, Kim DM, Kang SH, Moon DS (2014) Comparison of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK2 system for identification of Acinetobacter clinical isolates. Diagn Microbiol Infect Dis 78:29–34.  https://doi.org/10.1016/j.diagmicrobio.2013.07.013 CrossRefPubMedGoogle Scholar
  24. Li J, Cao JL, Wang X, Liu N, Wang W, Luo Y (2017) Acinetobacter pittii, an emerging new multi-drug resistant fish pathogen isolated from diseased blunt snout bream (Megalobrama amblycephala, Yih) in China. Appl Microbiol Biotechnol 101:6459–6471.  https://doi.org/10.1007/s00253-017-8392-4 CrossRefPubMedGoogle Scholar
  25. Lu WH, Chen H, Wang XD, Zou Y, Huang C (2009) Identification and phylogenetic analysis of the pathogenic Acinotobacter baumannii from hybridized prussian carp. Chin Vet Sci 18:291–307 (in Chinese) Google Scholar
  26. Mao Z, Mao Y, Wang J (2013) Isolation, identification and drug-resistance genes detection of Acinetobacter junii from fish. J Fish China 37:1572–1578 (in Chinese) CrossRefGoogle Scholar
  27. Nemec A, Musílek M, Maixnerová M, De Baere T, van der Reijden TJ, Vaneechoutte M, Dijkshoorn L (2009) Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov. haemolytic organisms isolated from humans. Int J Syst Evol Microbiol 59:118–124.  https://doi.org/10.1099/ijs.0.001230-0 CrossRefPubMedGoogle Scholar
  28. Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, Vaneechoutte M, Brisse S, Dijkshoorn L (2011) Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol 162:393–404.  https://doi.org/10.1016/j.resmic.2011.02.006 CrossRefPubMedGoogle Scholar
  29. Pang MD, Lin XQ, Hu M, Li J, Lu CP, Liu YJ (2012) Tetrahymena: an alternative model host for evaluating virulence of Aeromonas strains. PLoS ONE 7:e48922.  https://doi.org/10.1371/journal.pone.0048922 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Park G, Jin WY, Jang SJ, Kook JK, Choi JA, Park GC, Lee MJ, Park SN, Li XM, Cho SS, Jang CH, Kang SH, Moon DS (2015) Evaluation of four methods of assigning species and genus to medically important bacteria using 16S rRNA gene sequence analysis. Microbiol Immunol 59:285–298.  https://doi.org/10.1111/1348-0421.12254 CrossRefPubMedGoogle Scholar
  31. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582.  https://doi.org/10.1128/cmr.00058-07 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Praveen PK, Debnath C, Shekhar S, Dalai N, Ganguly S (2016) Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: a review. Vet World 9:6–11.  https://doi.org/10.14202/vetworld.2016.6-11 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Qin L, Zhu M, Xu J (2014) First report of Shewanella sp. and Listonella sp. infection in freshwater cultured loach, Misgurnus anguillicaudatus. Aquac Res 45:602–608.  https://doi.org/10.1111/j.1365-2109.2012.03260.x CrossRefGoogle Scholar
  34. Salas-Massó N, Figueras MJ, Andree KB, Furones MD (2018) Do the Escherichia coli European Union shellfish safety standards predict the presence of Arcobacter spp., a potential zoonotic pathogen? Sci Total Environ 624:1171–1179.  https://doi.org/10.1016/j.scitotenv.2017.12.178 CrossRefPubMedGoogle Scholar
  35. Sung JY, Koo SH, Kim S, Kwon GC (2015) Emergence of Acinetobacter pittii harboring New Delhi metallo-β-lactamase genes in Daejeon, Korea. Ann Lab Med 35:531–534.  https://doi.org/10.3343/alm.2015.35.5.531 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Thomsen LE, Slutz SS, Tan MW, Ingmer H (2006) Caenorhabditis elegans is a model host for Listeria monocytogenes. Appl Environ Microbiol 72:1700–1701.  https://doi.org/10.1128/AEM.72.2.1700-1701.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Versalovic J, Koeuth T, Lupski R (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831.  https://doi.org/10.1093/nar/19.24.6823 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wang J, Wu L, Xu L, Chen Y, Chen Y (2016) Draft genome sequence of a multidrug-resistant New Delhi metallo-β-lactamase NDM-1-producing Acinetobacter pittii sequence type 207 isolate from China. J Glob Antimicrob Resist 6:88–89.  https://doi.org/10.1016/j.jgar.2016.04.003 CrossRefPubMedGoogle Scholar
  39. Wareth G, Neubauer H, Sprague LD (2019) Acinetobacter baumannii—a neglected pathogen in veterinary and environmental health in Germany. Vet Res Commun 43:1–6.  https://doi.org/10.1007/s11259-018-9742-0 CrossRefPubMedGoogle Scholar
  40. Wisplinghoff H, Paulus T, Lugenheim M, Stefanik D, Higgins PG, Edmond MB, Wenzel RP, Seifert H (2012) Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. J Infect 64:282–290.  https://doi.org/10.1016/j.jinf.2011.12.008 CrossRefPubMedGoogle Scholar
  41. Xia L, Xiong D, Gu Z, Xu Z, Chen C, Xie J, Xu P (2008) Recovery of Acinetobacter baumannii, from diseased channel catfish (Ictalurus punctatus) in China. Aquaculture 284:285–288.  https://doi.org/10.1016/j.aquaculture.2008.07.038 CrossRefGoogle Scholar
  42. Yu J, Koo BH, Kim DH, Kim DH, Kim DW, Park SW (2015) Aeromonas sobria infection in farmed mud loach (Misgurnus mizolepis) in Korea, a bacteriological survey. Iran J Vet Res 16:194–201PubMedPubMedCentralGoogle Scholar
  43. Zhang CH, Lu JS, Zhao B (2010) The concept of the Yersinia pestis virulence test and the discussion of computation formula. Chin J Control Endem Dis 25:115–116 (in Chinese) Google Scholar
  44. Zhu M, Wang XR, Li J, Li YG, Liu ZP, Mo ZL (2016) Identification and virulence properties of Aeromonas veronii bv. sobria isolates causing an ulcerative syndrome of loach Misgurnus anguillicaudatus. J Fish Dis 39:777–781.  https://doi.org/10.1111/jfd.12413 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of AgricultureHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  2. 2.State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations