Rubellimicrobium rubrum sp. nov., a novel bright reddish bacterium isolated from a lichen sample

  • Long-Qian Jiang
  • Kun Zhang
  • Gui-Ding Li
  • Xin-Yu Wang
  • Song-Biao Shi
  • Qin-Yuan Li
  • De-Feng An
  • Lei Lang
  • Li-Song Wang
  • Cheng-Lin Jiang
  • Yi JiangEmail author
Original Paper


A novel strain, YIM 131921T, was isolated from a Physcia sp. lichen collected from the South Bank Forest of the Baltic Sea. The strain is Gram-negative, catalase positive and oxidase negative, strictly aerobic, asporogenous, non-motile and reddish brown in colour. The temperature and pH for growth were found to be 20–30 °C (optimum 28 °C) and pH 6.5–12.0 (optimum pH 7.0 ± 0.5). No growth was observed in the presence of NaCl. Based on 16S rRNA gene sequence similarity, strain YIM 131921T shares high similarities with Rubellimicrobium roseum YIM 48858T (98.3%), followed by Rubellimicrobium mesophilum MSL-20T (96.8%), Rubellimicrobium aerolatum 5715S-9T (96.1%) and Rubellimicrobium thermophilum DSM 16684T (96.0%). Phylogenetic trees showed YIM 131921T forms a cluster with type strains of the genus Rubellimicrobium. The predominant cellular fatty acids (> 20%) were identified as summed feature 8 (C18:1ω7c) and C16:0. Q-10 was found to be the predominant respiratory ubiquinone. The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, glycolipid, phospholipids and an unidentified aminolipid. The DNA G + C content of the draft genome sequence is 66.6 mol%. Strain YIM 131921T showed an average nucleotide identity value of 80.3% and a digital DNA–DNA hybridizations value of 26.1% with the reference strain R. roseum YIM 48858T based on draft genome sequences. Based on comparative analyses of phenotypic, molecular, chemotaxonomic data and genomic comparisons, strain YIM 131921T is concluded to represent a novel species of the genus Rubellimicrobium, for which the name Rubellimicrobium rubrum sp. nov. is proposed. The type strain is YIM 131921T (= CGMCC 1.13958T = NBRC 114054T = KCTC 72461T).


Rubellimicrobium rubrum New species Physcia sp. lichen 16S rRNA gene Draft genome sequences 



Funding was provided by National Natural Science Foundation of China (31460005).

Author contributions

L-QJ: performed the experiments and wrote the manuscript; X-YW: collected the lichen samples; KZ and G-DL: analysed the data; S-BS and Q-YL: performed the study; D-FA and LL: analysed the data; L-SW: identified the lichen samples; YJ: guided the experiments and revised the manuscript; C-LJ: designed the study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

This article does not contain any studies with human participants and/or animals performed by any of the authors.

Supplementary material

10482_2019_1304_MOESM1_ESM.docx (224 kb)
Supplementary material 1 (DOCX 224 kb)


  1. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993PubMedPubMedCentralGoogle Scholar
  2. Cao YR, Jiang Y, Wang Q, Tang SK, He WX, Xue QH, Xu LH, Jiang CL (2010) Rubellimicrobium roseum sp. nov., a Gram-negative bacterium isolated from the forest soil sample. Antonie Van Leeuwenhoek 98:389–394CrossRefPubMedGoogle Scholar
  3. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ (2008) Rubellimicrobium mesophilum sp nov., a mesophilic, pigmented bacterium isolated from soil. Int J Syst Evol Microbiol 58:1797–1800CrossRefPubMedGoogle Scholar
  4. Denner EBM, Paukner S, Kämpfer P, Moore ERB, Abraham WR, Busse HJ, Wanner G, Lubitz W (2001) Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841CrossRefPubMedGoogle Scholar
  5. Denner EBM, Kolari M, Hoornstra D, Tsitko I, Kämpfer P, Busse HJ, Mirja SS (2006) Rubellimicrobium thermophilum gen. nov. sp. nov., a red-pigmented, moderately thermophilic bacterium isolated from coloured slime deposits in paper machines. Int J Syst Evol Microbiol 56:1355–1362CrossRefPubMedGoogle Scholar
  6. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GH (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 21–33Google Scholar
  7. Felsenstein J (1985) ConfIdence limits on phylogenies: an approach using the bootstrat. Evolution 39:783–791CrossRefGoogle Scholar
  8. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  9. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil acinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  10. Jiang Y, Tang SK, Wiese J, Xu LH, Imhoff F, Jiang CL (2007) Streptomyces hainanensis sp. nov., a novel member of the genus Streptomyces. Int J Syst Evol Microbiol 57:2694–2698CrossRefPubMedGoogle Scholar
  11. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703CrossRefPubMedGoogle Scholar
  12. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361CrossRefGoogle Scholar
  14. Leifson E (1960) Atlas of bacterial flagellation. Q Rev Biol 242Google Scholar
  15. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714CrossRefGoogle Scholar
  16. Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676CrossRefGoogle Scholar
  17. Liu CB, Jiang Y, Wang XY, Chen DB, Chen X, Wang LS, Han L, Huang XS, Jiang CL (2017) Diversity, antimicrobial activity, and biosynthetic potential of cultivable actinomycetes with lichen symbiosis. Microb Ecol 74:570–584CrossRefPubMedGoogle Scholar
  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14:60CrossRefGoogle Scholar
  19. Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56:1263–1271CrossRefPubMedGoogle Scholar
  20. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species defnition. Proc Natl Acad Sci USA 106:19126–19131CrossRefGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstucting phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  22. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI, NewarkGoogle Scholar
  23. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654Google Scholar
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  25. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202CrossRefGoogle Scholar
  26. Vela AI, Fernandez A, Sánchez-Porro C, Sierra E, Mendez M, Arbelo M, Ventosa A, Domínguez L, Fernández-Garayzábal JF (2007) Flavobacterium ceti sp. nov., isolated from beaked whales (Ziphius cavirostris). Int J Syst Evol Microbiol 57:2604–2608CrossRefPubMedGoogle Scholar
  27. Weon HY, Son J, Yoo SH, Hong SB, Jeon YA, Kwon SW, Koo BS (2009) Rubellimicrobium aerolatum sp. nov., isolated from an air sample in Korea. Int J Syst Evol Microbiol 59:406–410CrossRefPubMedGoogle Scholar
  28. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov. sp. nov., a novel member of the family ‘oxalobacteraceae’ isolated from china. Int J Syst Evol Microbiol 55:1149–1153CrossRefPubMedGoogle Scholar
  29. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBiocloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, School of Life SciencesYunnan UniversityKunmingPeople’s Republic of China
  2. 2.Institute of Microbial PharmaceuticalsNortheastern UniversityShenyangPeople’s Republic of China
  3. 3.Key Lab for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingPeople’s Republic of China
  4. 4.School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi University for NationalitiesNanningPeople’s Republic of China

Personalised recommendations