Advertisement

Genome-based reclassification of Bacillus plakortidis Borchert et al. 2007 and Bacillus lehensis Ghosh et al. 2007 as a later heterotypic synonym of Bacillus oshimensis Yumoto et al. 2005; Bacillus rhizosphaerae Madhaiyan et al. 2011 as a later heterotypic synonym of Bacillus clausii Nielsen et al. 1995

  • Guo-Hong Liu
  • Manik Prabhu Narsing Rao
  • Zhou-Yan Dong
  • Jie-Ping Wang
  • Jian-Mei Che
  • Qian-Qian Chen
  • Cetin Sengonca
  • Bo LiuEmail author
  • Wen-Jun LiEmail author
Original Paper

Abstract

In the present study, phylogenetic and genome-based comparison was carried out to clarify the taxonomic positions of alkaliphilic Bacillus species, Bacillus plakortidis, Bacillus lehensis, Bacillus oshimensis, Bacillus rhizosphaerae and Bacillus clausii. Phylogenetic trees based on 16S rRNA gene sequences and concatenated protein marker genes were constructed. Average nucleotide identity (ANI) values were calculated to compare genetic relatedness. In phylogenetic trees, B. plakortidis DSM 19153T, B. lehensis DSM 19099T, and B. oshimensis DSM 18940T; B. rhizosphaerae DSM 21911T and B. clausii DSM 8716T clade together. The average nucleotide identity (ANI) values between B. oshimensis DSM 18940T, B. plakortidis DSM 19153T and B. lehensis DSM 19099T ranged from 98.7–98.8%, while the ANI values between B. rhizosphaerae DSM 21911T and B. clausii DSM 8716T were 95.2–95.5%. The ANI values were higher than the recognized threshold value for bacterial species delineation. Based on phylogenetic and genome comparison we propose reclassification of B. plakortidis and B. lehensis as a later heterotypic synonym of B. oshimensis; B. rhizosphaerae as a later heterotypic synonym of B. clausii.

Keywords

Bacillus lehensis Bacillus oshimensis Bacillus plakortidis Bacillus rhizosphaerae Bacillus clausii Alkaliphilic Bacillus Phylogenomics Heterotypic synonym 

Abbreviation

ANI

Average nucleotide identity

Notes

Acknowledgements

This work was financially supported by the External cooperative project of Fujian Academy of Agricultural Sciences (Grant No.: DEC201821209), the Science and Technology Innovation Team Program of Fujian Academy of Agricultural Sciences (Grant No.: STIT2017-1-11), The Scientific Research Foundation for Returned Scholars, Fujian Academy of Agricultural Sciences (Grant No.: YJRC2014-1).

Author’s contribution

GHL, MPNR, and ZYD performed genome analysis. JPW, JME, QQC performed the part of biochemical characterization. CS, GHL, and MPNR wrote the manuscript. BL and WJL supervised the experiments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Borchert MS, Nielsen P, Graeber I, Kaesler I, Szewzyk U, Pape T, Antranikian G, Schäfer T (2007) Bacillus plakortidis sp. nov. and Bacillus murimartini sp. nov., novel alkalitolerant members of rRNA group 6. Int J Syst Evol Microbiol 57:2888–2893CrossRefPubMedGoogle Scholar
  2. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefPubMedGoogle Scholar
  3. Dunlap CA (2015) Phylogenomic analysis shows that ‘Bacillus vanillea’ is a later heterotypic synonym of Bacillus siamensis. Int J Syst Evol Microbiol 65:3507–3510CrossRefPubMedGoogle Scholar
  4. Dunlap CA, Kim SJ, Kwon SW, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciensBacillus methylotrophicusBacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 66:1212–1217CrossRefPubMedGoogle Scholar
  5. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  6. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  8. Ghosh A, Bhardwaj M, Satyanarayana T, Khurana M, Mayilraj S, Jain RK (2007) Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 57:238–242CrossRefPubMedGoogle Scholar
  9. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91CrossRefPubMedGoogle Scholar
  10. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  11. Klenk HP, Göker M (2010) En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 33:175–182CrossRefPubMedGoogle Scholar
  12. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572CrossRefPubMedGoogle Scholar
  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12–R2483CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714CrossRefPubMedGoogle Scholar
  17. Liu Y, Lai Q, Shao Z (2018) Genome analysis-based reclassification of Bacillus weihenstephanensis as a later heterotypic synonym of Bacillus mycoides. Int J Syst Evol Microbiol 68:106–112CrossRefPubMedGoogle Scholar
  18. Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Hari K (2011) Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil. Antonie Van Leeuwenhoek 100:437–444CrossRefPubMedGoogle Scholar
  19. Moller EM, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20:6115–6116CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761CrossRefGoogle Scholar
  21. Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY (2018) Phylogenomic Analysis of the Gammaproteobacterial Methanotrophs (Order Methylococcales) Calls for the Reclassification of Members at the Genus and Species Levels. Front Microbiol 9:3162CrossRefPubMedPubMedCentralGoogle Scholar
  22. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131CrossRefPubMedGoogle Scholar
  23. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931CrossRefPubMedGoogle Scholar
  24. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  25. Wayne LG, Brenner DJ, Colwell RR, PaD Grimont, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 37:463–464CrossRefGoogle Scholar
  26. Wu M, Scott AJ (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28:1033–1034CrossRefPubMedGoogle Scholar
  27. Yumoto I, Hirota K, Goto T, Nodasaka Y, Nakajima K (2005) Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol 55:907–911CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Agricultural Bio-resources Research InstituteFujian Academy of Agricultural SciencesFuzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  3. 3.Institute of Crop Sciences and Resource Conservation (INRES)University of BonnBonnGermany
  4. 4.Key Laboratory of Biogeography and Bioresource in Arid LandXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesÜrümqiPeople’s Republic of China

Personalised recommendations