Advertisement

Streptococcus castoreus, an uncommon group A Streptococcus in beavers

  • Kristin MühldorferEmail author
  • Jörg Rau
  • Ahmad Fawzy
  • Carsten Heydel
  • Stefanie P. Glaeser
  • Mark van der Linden
  • Peter Kutzer
  • Tobias Knauf-Witzens
  • Matthias Hanczaruk
  • Anna Sophie Eckert
  • Tobias Eisenberg
Original Paper
  • 54 Downloads

Abstract

Streptococcus castoreus is a rarely encountered beta-haemolytic group A Streptococcus with high tropism for the beaver as host. Based on 27 field isolates under study, evidence strongly suggests that S. castoreus behaves as an opportunistic pathogen in beavers. Although it belongs to the resident mucosal microbiota, this Streptococcus species is associated with purulent lesions in diseased animals. With few exceptions, isolates proved to be highly similar in a panel of phenotypic (including biochemistry, resistance pattern, MALDI-TOF mass spectrometry and Fourier transform-infrared spectroscopy) and classic molecular (16S rRNA and sodA gene) analyses, and thus did not show any specific pattern according to host species or spatio-temporal origin. Conversely, S. castoreus isolates were differentiated into a multitude of pulsed-field gel electrophoresis ‘pulsotypes’ that did not seem to reflect true epidemiologic lineages. In contrast, single reactions of genomic fingerprinting using BOX-, (GTG)5- and RAPD-PCRs revealed at least subclusters with respect to host species, geographic origin or year, and confirmed the co-colonization of individuals with more than one isolate. In addition to isolates from free-ranging Eurasian beavers (Castor fiber), this study includes S. castoreus from captive North American beavers (Castor canadensis) for the first time.

Keywords

Bacteria Beaver Beta-haemolytic streptococci Castor Lancefield group A MALDI-TOF MS Pyogenic group 

Notes

Acknowledgements

The authors like to thank Martin Dyk, Katharina Engel, Nadine Jahn and Vanessa Nowak for excellent technical assistance, and Dr. Ute Kaim, Anne Nesseler, Dr. Karin Riße, Dr. Svenja Scheffold, Dr. Christoph Schulze, Dr. Iris Völker and Dr. Gudrun Wibbelt for providing animal samples and pathology reports.

Authors’ contributions

KM and TE conceived the study. KM, PK, MH and TE provided the isolates. KM, JR, AF, CH, SPG, MvdL, PK, MH, ASE and TE performed diagnostics/experiments/analyses. JR, AF, CH, SPG, TKW and TE contributed materials/analysis tools. KM processed the data. KM and TE wrote the manuscript. All authors contributed to the content, and read and approved the final draft of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors have nothing to declare.

Ethical statement

Streptococcus castoreus isolates used in the present study were obtained from samples collected from beaver carcasses during routine disease investigations, which have been submitted to the participating institutions and laboratories for diagnostic purposes.

Supplementary material

10482_2019_1293_MOESM1_ESM.pdf (363 kb)
Supplementary material 1 (PDF 363 kb)

References

  1. Batbold J, Batsaikhan N, Shar S, Hutterer R, Kryštufek B, Yigit N, Mitsain G, Palomo L (2016) Castor fiber (errata version published in 2017). The IUCN Red List Of Threatened Species 2016: e.T4007A115067136. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T4007A22188115.en
  2. Bekal S, Gaudreau C, Laurence RA, Simoneau E, Raynal L (2006) Streptococcus pseudoporcinus sp. nov., a novel species isolated from the genitourinary tract of women. J Clin Microbiol 44:2584–2586CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bell JF, Owen CR, Jellison WL (1958) Group A Streptococcus infection in wild rodents. J Infect Dis 103:196–203CrossRefPubMedGoogle Scholar
  4. Campbell-Palmer R, Rosewell F (2013) Captive management guidelines for eurasian beaver (Castor fiber). Royal Zoological Society of Scotland, PeterboroughGoogle Scholar
  5. CLSI VET01 (2018) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 5th edn. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  6. CLSI VET08 (2018) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 4th edn. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  7. Coloqhoun JA (1997) Discovery of deep-sea actinomycetes. Ph.D. dissertation. Research School of Biosciences, University of Kent, Canterbury, United KingdomGoogle Scholar
  8. Dawson ED, Taylor AW, Smagala JA, Rowlen KL (2009) Molecular detection of Streptococcus pyogenes and Streptococcus dysgalactiae ssp. equisimilis. Mol Biotechnol 42:117–127CrossRefPubMedGoogle Scholar
  9. de Vries SPW, Hadjirin NF, Lay EM, Zadoks RN, Peacock Parkhill J, Grant AJ, McDougall S, Holmes MA (2018) Streptococcus bovimastitidis sp. nov., isolated from a dairy cow with mastitis. Int J Syst Evol Microbiol 68:21–27CrossRefPubMedGoogle Scholar
  10. Eisenberg T, Rau J, Westerhüs U, Knauf-Witzens T, Fawzy A, Schlez K, Zschöck M, Prenger-Berninghoff E, Heydel C, Sting R, Glaeser SP, Pulami D, van der Linden M, Ewers C (2017) Streptococcus agalactiae in elephants—a comparative study with isolates from human, zoo animal and livestock origin. Vet Microbiol 204:141–150CrossRefPubMedGoogle Scholar
  11. Franklinos LHV, Efstratiou A, Macgregor SK, John SK, Hopkins T, Cunningham AA, Lawson B (2015) Streptococcus pyogenes infection in a free-ranging European hedgehog (Erinaceus europaeus). EcoHealth 12:689–692CrossRefPubMedGoogle Scholar
  12. Frosch C, Kraus RHS, Angst C, Allgöwer R, Michaux J, Teubner J, Nowak C (2014) The genetic legacy of multiple beaver reintroductions in Central Europe. PLoS ONE 9:e97619CrossRefPubMedPubMedCentralGoogle Scholar
  13. Glaeser S, Galatis H, Martin K, Kämpfer P (2013) Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbena. Int J Syst Evol Microbiol 63:3487–3493CrossRefPubMedGoogle Scholar
  14. Glazunova OO, Didier R, Roux V (2009) Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int J Syst Evol Microbiol 59:2317–2322CrossRefPubMedGoogle Scholar
  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  16. Höner OP, Wachter B, Speck S, Wibbelt G, Ludwig A, Fyumagwa RD, Wohlsein P, Lieckfeld D, Hofer H, East M (2006) Severe Streptococcus infection in spotted hyenas in the Ngorongoro crater, Tanzania. Vet Microbiol 115:223–228CrossRefPubMedGoogle Scholar
  17. Hoshino T, Fujiwara T, Kilian M (2005) Use of phylogenetic analyses to identify nonhemolytic streptococci isolated from bacteremic patients. J Clin Microbiol 43:6073–6085CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351CrossRefPubMedGoogle Scholar
  19. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  20. Lawson PA, Foster G, Falsen E, Makropoulos SJ, Collins M (2005) Streptococcus castoreus sp. nov., isolated from a beaver (Castor fiber). Int J Syst Evol Microbiol 55:843–846CrossRefPubMedGoogle Scholar
  21. Mistou M-Y, Sutcliffe IC, van Sorge NM (2016) Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol Rev 40:464–479CrossRefPubMedPubMedCentralGoogle Scholar
  22. Moreno B, Bolea R, Morales M, Martín-Burriel I, González CH, Badiola JJ (2015) Isolation and phylogenetic characterization of Streptococcus halichoeri from a European badger (Meles meles) with pyogranulomatous pneumonia. J Comp Pathol 152:269–273CrossRefPubMedGoogle Scholar
  23. Niu L, Lu S, Lai X-H, Hu S, Chen C, Zhang G, Yang J, Jin D, Wang Y, Lan R, Lu G, Xie Y, Ye C, Xu J (2017) Streptococcus himalayensis sp. nov., isolated from the respiratory tract of Marmota himalayana. Int J Syst Evol Microbiol 67:256–261CrossRefPubMedGoogle Scholar
  24. Nolet BA, Broekhuizen S, Dorrestein GM, Rienks KM (1997) Infectious diseases as main causes of mortality to beavers Castor fiber after translocation to the Netherlands. J Zool Lond 241:35–42CrossRefGoogle Scholar
  25. O’Brien MF, Meldrum J, Foster I (2018) Medical and surgical management of intraspecific wounds in a European beaver kit (Castor fiber). Vet Rec Case Rep 6:e00561CrossRefGoogle Scholar
  26. Oliveira IC, De Mattos MC, Areal MF, Ferreira-Carvalho BT, Figuiredo AM, Benchetrit LC (2005) Pulsed-field gel electrophoresis of human group B streptococci isolated in Brazil. J Chemother 17:258–263CrossRefPubMedGoogle Scholar
  27. Parks T, Barrett L, Jones N (2015) Invasive streptococcal disease: a review for clinicians. Br Med Bull 115:77–89CrossRefPubMedGoogle Scholar
  28. Póntigo F, Moraga M, Flores SV (2015) Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res 14:10905–10918CrossRefGoogle Scholar
  29. Rau J, Männig A, Hiller E, Mauder N, Wind C, Horlacher S, Kadlec K, Schwarz S, Contzen M (2016a) MALDI-TOF mass spectrometry for reliable identification of bacteria—a validation based on Staphylococcaceae field isolates. Aspects Food Control Anim Health (eJ) 2016:1–46Google Scholar
  30. Rau J, Eisenberg T, Männig A, Wind C, Lasch P, Sting R (2016b) MALDI-UP—an internet platform for the exchange of MALDI-TOF mass spectra. User guide for http://maldi-up.ua-bw.de/. Aspects Food Control Anim Health (eJ) 2016:1–17
  31. Ryser-Degiorgis M-P (2013) Wildlife health investigations: needs, challenges and recommendations. BMC Vet Res 9:223CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schulze C, Kutzer P, Winterhoff N, Engelhardt A, Bilk S, Teubner J (2015) Isolation and antimicrobial susceptibility of Streptococcus castoreus isolated from carcasses of European beavers (Castor fiber) in Germany. Berl Münch Tierärztl Wochenschr 128:394–396PubMedGoogle Scholar
  33. Tan RE, Yee WX, Cao DY, Tan PL, Koh TH (2016) Zoonotic Streptococcus canis infection in Singapore. Singap Med J 57:218CrossRefGoogle Scholar
  34. Taurisano ND, Butler BP, Stone D, Hariharan H, Fields PJ, Ferguson HW, Haulena M, Cotrell P, Nielsen O, Raverty S (2018) Streptococcus phocae in marine mammals of northeastern pacific and arctic Canada: a retrospective analysis of 85 postmortem investigations. J Wildl Dis 54:101–111CrossRefPubMedGoogle Scholar
  35. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tsuyuki Y, Kurita G, Murata Y, Goto M, Takahashi T (2017) Identification of group G streptococcal isolates from companion animals in Japan and their antimicrobial resistance patterns. Jpn J Infect Dis 70:394–398CrossRefPubMedGoogle Scholar
  37. Vaz M, Meirinhos-Soares L, Sousa CCS, Ramirez M, Melo-Cristino J, Lopez JA (2013) Serotype discrimination of encapsulated Streptococcus pneumoniae strains by Fourier-transform infrared spectroscopy and chemometrics. J Microbiol Meth 93:102–107CrossRefGoogle Scholar
  38. Vela AI, Sánchez del Rey V, Zamora L, Casamayor A, Domínguez L, Fernández-Garayzábal JF (2014) Streptococcus cuniculi sp. nov., isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol 64:2486–2490CrossRefPubMedGoogle Scholar
  39. Vela AI, Mentaberre G, Lavín S, Domínguez L, Fernández-Garayzábal JF (2016) Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica). Int J Syst Evol Microbiol 66:196–200CrossRefPubMedGoogle Scholar
  40. Wobeser G, Douglas Campbell G, Dallaire A, MyBurney S (2009) Tularemia, plague, yersiniosis, and Tyzzer’s disease in wild rodents and lagomorphs in Canada: a review. Can Vet J 50:1251–1256PubMedPubMedCentralGoogle Scholar
  41. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman B, Euzeby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Wildlife DiseasesLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
  2. 2.Chemical and Veterinary Investigations Office StuttgartFellbachGermany
  3. 3.Department of Medicine and Infectious Diseases, Faculty of Veterinary MedicineCairo UniversityGiza SquareEgypt
  4. 4.Hessian State Laboratory (LHL)GiessenGermany
  5. 5.Institute of Hygiene and Infectious Diseases of AnimalsJustus Liebig University GiessenGiessenGermany
  6. 6.Institute of Applied MicrobiologyJustus Liebig University GiessenGiessenGermany
  7. 7.German National Reference Center for Streptococci, Department of Medical MicrobiologyUniversity Hospital RWTH AachenAachenGermany
  8. 8.Landeslabor Berlin-BrandenburgFrankfurt (Oder)Germany
  9. 9.Wilhelma – Zoological and Botanical GardensStuttgartGermany
  10. 10.Bavarian Health and Food Safety AuthorityOberschleißheimGermany

Personalised recommendations