Advertisement

Antonie van Leeuwenhoek

, Volume 112, Issue 11, pp 1577–1592 | Cite as

Bioinformatic analyses of a potential Salmonella-virus-FelixO1 biocontrol phage BPS15S6 and the characterisation and anti-Enterobacteriaceae-pathogen activity of its endolysin LyS15S6

  • Han HanEmail author
  • Xuemin Li
  • Tingting Zhang
  • Xiaoqing Wang
  • Jiaojiao Zou
  • Chunxia Zhang
  • Huiling Tang
  • Yanyan Zou
  • Boxing Cheng
  • Ran Wang
Original Paper
  • 88 Downloads

Abstract

Foodborne Enterobacteriaceae pathogens, especially Salmonella, still seriously threaten food safety. To establish a foundation for further developing phage- and endolysin-based methods combating these pathogens, in this study, the newly isolated Salmonella-virus-FelixO1 phage BPS15S6 for biocontrol purposes was characterised by genomic bioinformatic analysis, and then its endolysin LyS15S6 was obtained using a prokaryotic expression system, characterised in vitro and evaluated in the antibacterial efficacy. It was shown that BPS15S6 had an 87,609-bp genome with 130 open reading frames and does not appear to carry known lysogeny-associated genes and other damaging genetic determinants and is unlikely to perform generalised transduction. Furthermore, LyS15S6 was determined to possess the high enzymatic activity of 1,001,000 U mg−1 and the broad spectrum of lysing 56 tested Gram-negative strains. The assays of thermostability and optimum pH revealed that LyS15S6 was stable up to 40 °C and more active at pH 7. Notably, we demonstrate that edible ε-poly-l-lysine (EPL) can be used as an outer-membrane permeabiliser to improve the antibacterial performance of endolysins. When combined with 1 μg ml−1 EPL, 2 μM LyS15S6 could cause 3–4 log viable cell reductions of the three tested Enterobacteriaceae pathogens in vitro after 2 h of reaction at 25 °C and 2.56 and 3.14 log reductions of Salmonella ATCC13076 after 15 min of reaction at 25 °C and 2 h of reaction at 8 °C respectively. A new strategy, the combined application of endolysins and edible EPL for combating Enterobacteriaceae pathogens in food, is thus presented in this work.

Keywords

Gram-negative bacteria Genome Glycoside hydrolase Epsilon-poly-l-lysine Outer membrane permeabiliser 

Notes

Acknowledgements

We are grateful to Prof. Baowei Yang (Northwest A&F University, China) and Dr. Hongduo Bao (Jiangsu Academy of Agricultural Sciences, China) for generously providing bacterial strains. This work was supported by the Young Scientific Talents Foundation of Guizhou Provincial Education Department [Grant Number KY(2017)211].

Author contributions

HH conceived and designed this study, performed a major part of experiments, analysed the data and wrote this manuscript. XL isolated the phages and performed mainly the assays of phages EOP and antibacterial activity of the endolysin. TZ was involved in the design of this study, the bioinformatic analyses, the peptidoglycan hydrolysis test and the determination of endolysin lytic spectrum. XW was involved in the overexpression, purification, detection and quantitative determination of the endolysin. JZ, CZ, HT, YZ and BC were involved in the assays of endolysin antibacterial activity. RW was involved in the data analysis and the revise of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

10482_2019_1283_MOESM1_ESM.pdf (407 kb)
Supplementary material 1 (PDF 406 kb)
10482_2019_1283_MOESM2_ESM.pdf (858 kb)
Supplementary material 2 (PDF 858 kb)

References

  1. Adams DA, Thomas KR, Jajosky RA, Foster L, Baroi G, Sharp P, Onweh DH, Schley AW, Anderson WJ (2017) Summary of notifiable infectious diseases and conditions—United States, 2015. Morb Mortal Wkly Rep 64:1–143.  https://doi.org/10.15585/mmwr.mm6453a1 CrossRefGoogle Scholar
  2. Adriaenssens E, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses 9:70.  https://doi.org/10.3390/v9040070 CrossRefPubMedCentralGoogle Scholar
  3. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M (2009) ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 25:1968–1969.  https://doi.org/10.1093/bioinformatics/btp347 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R (2015) Bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses 7:4836–4853.  https://doi.org/10.3390/v7082847 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bardina C, Colom J, Spricigo DA, Otero J, Sánchez-Osuna M, Cortés P, Llagostera M (2016) Genomics of three new bacteriophages useful in the biocontrol of Salmonella. Front Microbiol 7:545.  https://doi.org/10.3389/fmicb.2016.00545 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618.  https://doi.org/10.1093/nar/29.12.2607 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Briers Y, Lavigne R, Volckaert G, Hertveldt K (2007a) A standardized approach for accurate quantification of murein hydrolase activity in high-throughput assays. J Biochem Biophys Methods 70:531–533.  https://doi.org/10.1016/j.jbbm.2006.10.009 CrossRefPubMedGoogle Scholar
  9. Briers Y, Volckaert G, Cornelissen A, Lagaert S, Michiels CK, Lavigne R (2007b) Muralytic activity and modular structure of the endolysins of pseudomonas aeruginosa bacteriophages ФKZ and EL. Mol Microbiol 65:1334–1344.  https://doi.org/10.1111/j.1365-2958.2007.05870.x CrossRefPubMedGoogle Scholar
  10. Briers Y, Walmagh M, Lavigne R (2010) Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J Appl Microbiol 110:778–785.  https://doi.org/10.1111/j.1365-2672.2010.04931.x CrossRefGoogle Scholar
  11. Casjens SR, Gilcrease EB (2009) Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol 502:91–111.  https://doi.org/10.1007/978-1-60327-565-1_7 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Casjens SR, Gilcrease EB, Winn-Stapley DA, Schicklmaier P, Schmieger H, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, Hendrix RW (2005) The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J Bacteriol 187:1091–1104.  https://doi.org/10.1128/JB.187.3.1091-1104.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Endersen L, O’Mahony J, Hill C, Ross RP, Mcauliffe O, Coffey A (2014) Phage therapy in the food industry. Annu Rev Food Sci Technol 5:327–349.  https://doi.org/10.1146/annurev-food-030713-092415 CrossRefPubMedGoogle Scholar
  14. European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC) (2018) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J 16:5500.  https://doi.org/10.2903/j.efsa.2018.5500 CrossRefGoogle Scholar
  15. Garneau JR, Depardieu F, Fortier LC, Bikard D, Monot M (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7:8292.  https://doi.org/10.1038/s41598-017-07910-5 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607CrossRefGoogle Scholar
  17. Geornaras I, Sofos JN (2005) Activity of ε-polylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes. J Food Sci 70:M404–M408.  https://doi.org/10.1111/j.1365-2621.2005.tb08325.x CrossRefGoogle Scholar
  18. Goodman RE, Ebisawa M, Ferreira F, Sampson HA, van Ree R, Vieths S, Baumert JL, Bohle B, Lalithambika S, Wise J, Taylor SL (2016) AllergenOnline: a peer-reviewed, curated allergen database to assess novel food proteins for potential cross-reactivity. Mol Nutr Food Res 60:1183–1198.  https://doi.org/10.1002/mnfr.201500769 CrossRefPubMedGoogle Scholar
  19. Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, Dong K, He P, Guo X, Qin J (2017) A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol 8:293.  https://doi.org/10.3389/fmicb.2017.00293 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Han H, Wei X, Wei Y, Zhang X, Li X, Jiang J, Wang R (2017) Isolation, characterization, and bioinformatic analyses of lytic Salmonella Enteritidis phages and tests of their antibacterial activity in food. Curr Microbiol 74:175–183.  https://doi.org/10.1007/s00284-016-1169-7 CrossRefPubMedGoogle Scholar
  21. Ho J, Tambyah PA, Paterson DL (2010) Multiresistant gram-negative infections: a global perspective. Curr Opin Infect Dis 23:546–553.  https://doi.org/10.1097/QCO.0b013e32833f0d3e CrossRefPubMedGoogle Scholar
  22. Hoyle BD, Beveridge TJ (1984) Metal binding by the peptidoglycan sacculus of Escherichia coli K-12. Can J Microbiol 30:204–211.  https://doi.org/10.1139/m84-031 CrossRefPubMedGoogle Scholar
  23. Hyldgaard M, Mygind T, Vad BS, Stenvang M, Otzen DE, Meyer RL (2014) The antimicrobial mechanism of action of epsilon-poly-l-lysine. Appl Environ Microbiol 80:7758–7770.  https://doi.org/10.1128/AEM.02204-14 CrossRefPubMedPubMedCentralGoogle Scholar
  24. International Committee on Taxonomy of Viruses (ICTV) (2019) ICTV Master Species List 2018b.v1. ICTV official website. https://talk.ictvonline.org/files/master-species-lists/m/msl/. Accessed 8 Apr 2019
  25. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580.  https://doi.org/10.1006/jmbi.2000.4315 CrossRefGoogle Scholar
  26. Kropinski AM, Kovalyova IV, Billington SJ, Patrick AN, Butts BD, Guichard JA et al (2007) The genome of epsilon15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. Virology 369:234–244.  https://doi.org/10.1016/j.virol.2007.07.027 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kutter E, De VD, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86.  https://doi.org/10.2174/138920110790725401 CrossRefPubMedGoogle Scholar
  28. Legotsky SA, Vlasova KY, Priyma AD, Shneider MM, Pugachev VG, Totmenina OD, Kabanov AV, Miroshnikov KA, Klyachko NL (2014) Peptidoglycan degrading activity of the broad-range Salmonella bacteriophage S-394 recombinant endolysin. Biochimie 107:293–299.  https://doi.org/10.1016/j.biochi.2014.09.017 CrossRefPubMedGoogle Scholar
  29. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272.  https://doi.org/10.1101/gr.097261.109 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lim JA, Shin H, Kang DH, Ryu S (2012) Characterization of endolysin from a Salmonella Typhimurium-infecting bacteriophage SPN1S. Res Microbiol 163:233–241.  https://doi.org/10.1016/j.resmic.2012.01.002 CrossRefPubMedGoogle Scholar
  31. Lim JA, Shin H, Heu S, Ryu S (2014) Exogenous lytic activity of SPN9CC endolysin against gram-negative bacteria. J Microbiol Biotechnol 24:803–811.  https://doi.org/10.4014/jmb.1403.03035 CrossRefPubMedGoogle Scholar
  32. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447.  https://doi.org/10.1093/nar/gkn656 CrossRefPubMedGoogle Scholar
  33. Liu B, Zheng D, Jin Q, Chen L, Yang J (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47:D687–D692.  https://doi.org/10.1093/nar/gky1080 CrossRefPubMedGoogle Scholar
  34. Lobocka M, Hejnowicz MS, Gagala U, Weber-Dabrowska B, Wegrzyn G, Dadlez M (2014) Chapter 2 the first step to bacteriophage therapy: how to choose the correct phage. In: Borysowski J, Miedzybrodzki R, Gorski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk, pp 23–67Google Scholar
  35. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57.  https://doi.org/10.1093/nar/gkw413 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM et al (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889.  https://doi.org/10.1086/650733 CrossRefPubMedGoogle Scholar
  37. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203.  https://doi.org/10.1093/nar/gkw1129 CrossRefPubMedGoogle Scholar
  38. Merrill BD, Ward AT, Grose JH, Hope S (2016) Software-based analysis of bacteriophage genomes, physical ends, and packaging strategies. BMC Genom 17:679.  https://doi.org/10.1186/s12864-016-3018-2 CrossRefGoogle Scholar
  39. Mmolawa PT, Schmieger H, Tucker CP, Heuzenroeder MW (2003) Genomic structure of the Salmonella enterica serovar Typhimurium DT 64 bacteriophage ST64T: evidence for modular genetic architecture. J Bacteriol 185:3473–3475.  https://doi.org/10.1128/jb.185.11.3473-3475.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Moreno Switt AI, Orsi RH, den Bakker HC, Vongkamjan K, Altier C, Wiedmann M (2013) Genomic characterization provides new insight into Salmonella phage diversity. BMC Genom 14:481.  https://doi.org/10.1186/1471-2164-14-481 CrossRefGoogle Scholar
  41. Nelson DC, Schmelcher M, Rodriguezrubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM (2012) Endolysins as antimicrobials. Adv Virus Res 83:299–365.  https://doi.org/10.1016/B978-0-12-394438-2.00007-4 CrossRefPubMedGoogle Scholar
  42. Nielsen H (2017) Predicting secretory proteins with SignalP. In: Kihara D (ed) Protein function prediction. Methods in molecular biology, vol 1611. Humana Press, New York, pp 59–73.  https://doi.org/10.1007/978-1-4939-7015-5_6 CrossRefGoogle Scholar
  43. Oliveira H, Melo LD, Santos SB, Nóbrega FL, Ferreira EC, Cerca N, Azeredo J, Kluskens LD (2013) Molecular aspects and comparative genomics of bacteriophage endolysins. J Virol 87:4558–4570.  https://doi.org/10.1128/JVI.03277-12 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R, Neves-Petersen MT, Kluskens LD, Azeredo J (2014) A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS ONE 9:e108376.  https://doi.org/10.1371/journal.pone.0108376 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Oliveira H, Vilas Boas D, Mesnage S, Kluskens LD, Lavigne R, Sillankorva S, Secundo F, Azeredo J (2016) Structural and enzymatic characterization of ABgp46, a novel phage endolysin with broad anti-gram-negative bacterial activity. Front Microbiol 7:208.  https://doi.org/10.3389/fmicb.2016.00208 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pirnay JP, Blasdel BG, Bretaudeau L, Buckling A, Chanishvili N, Clark JR et al (2015) Quality and safety requirements for sustainable phage therapy products. Pharm Res 32:2173–2179.  https://doi.org/10.1007/s11095-014-1617-7 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rodríguez-Rubio L, Gutiérrez D, Donovan DM, Martínez Beatriz R, Rodríguez A, García P (2015) Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Crit Rev Biotechnol 36:1–11.  https://doi.org/10.3109/07388551.2014.993587 CrossRefGoogle Scholar
  48. Sambrook JF, Russell DW (2001) Chapter 2 bacteriophage λ and its vectors. In: Sambrook JF (ed) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory (CSH) Press, New York, pp 147–243Google Scholar
  49. Savva CG, Dewey JS, Moussa SH, To KH, Holzenburg A, Young R (2014) Stable micron-scale holes are a general feature of canonical holins. Mol Microbiol 91:57–65.  https://doi.org/10.1111/mmi.12439 CrossRefPubMedGoogle Scholar
  50. Schmelcher M, Loessner MJ (2016) Bacteriophage endolysins: applications for food safety. Curr Opin Biotechnol 37:76–87.  https://doi.org/10.1016/j.copbio.2015.10.005 CrossRefPubMedGoogle Scholar
  51. Schmelcher M, Donovan DM, Loessner MJ (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171.  https://doi.org/10.2217/fmb.12.97 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schneider CL (2017) Bacteriophage-mediated horizontal gene transfer: transduction. In: Harper D, Abedon S, Burrowes B, McConville M (eds) Bacteriophages. Springer Press, Cham, pp 1–42Google Scholar
  53. Schuch R, Fischetti VA, Nelson DC (2009) A genetic screen to identify bacteriophage lysins. Methods Mol Biol 502:307–319.  https://doi.org/10.1007/978-1-60327-565-1_18 CrossRefPubMedGoogle Scholar
  54. Summer EJ, Berry J, Tran TA, Niu L, Struck DK, Young R (2007) Rz/Rz1 lysis gene equivalents in phages of gram-negative hosts. J Mol Biol 373:1098–1112.  https://doi.org/10.1016/j.jmb.2007.08.045 CrossRefPubMedGoogle Scholar
  55. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tiwari R, Dhama K, Chakraborty S, Kumar A, Rahal A, Kapoor S (2014) Bacteriophage therapy for safeguarding animal and human health: a review. Pak J Agric Sci 17:301–315.  https://doi.org/10.3923/pjbs.2014.301.315 CrossRefGoogle Scholar
  57. Turner D, Reynolds D, Seto D, Mahadevan P (2013) CoreGenes3.5: a webserver for the determination of core genes from sets of viral and small bacterial genomes. BMC Res Notes 6:140.  https://doi.org/10.1186/1756-0500-6-140 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Viazis S, Akhtar M, Feirtag J, Brabban AD, Diez-Gonzalez F (2011) Isolation and characterization of lytic bacteriophages against enterohaemorrhagic Escherichia coli. J Appl Microbiol 110:1323–1331.  https://doi.org/10.1111/j.1365-2672.2011.04989.x CrossRefPubMedGoogle Scholar
  59. Walmagh M, Briers Y, dos Santos SB, Azeredo J, Lavigne R (2012) Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201φ2-1 and PVP-SE1. PLoS ONE 7:e36991.  https://doi.org/10.1371/journal.pone.0036991 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wang R, Han H, Zhang H, Bao H, Wang T (2012) Isolation and characterization of a lytic bacteriophage of enterotoxigenic Escherichia coli K88. Acta Agric Boreal Sin 27:163–167.  https://doi.org/10.3969/j.issn.1000-7091.2012.04.031 CrossRefGoogle Scholar
  61. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303.  https://doi.org/10.1093/nar/gky427 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Whichard JM, Weigt LA, Borris DJ, Li LL, Zhang Q, Kapur V, Pierson FW, Lingohr EJ, She YM, Kropinski AM, Sriranganathan N (2010) Complete genomic sequence of bacteriophage Felix O1. Viruses 2:710–730.  https://doi.org/10.3390/v2030710 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yang B, Xi M, Wang X, Cui S, Yue T, Hao H, Wang Y, Cui Y, Alali WQ, Meng J, Walls I, Wong DM, Doyle MP (2011) Prevalence of Salmonella on raw poultry at retail markets in China. J Food Prot 74:1724–1728.  https://doi.org/10.4315/0362-028X.JFP-11-215 CrossRefPubMedGoogle Scholar
  64. Yang B, Qiao L, Zhang X, Cui Y, Xia X, Cui S et al (2013) Serotyping, antimicrobial susceptibility, pulse field gel electrophoresis analysis of Salmonella isolates from retail foods in Henan Province, China. Food Control 32:228–235.  https://doi.org/10.1016/j.foodcont.2012.11.022 CrossRefGoogle Scholar
  65. Ye R, Xu H, Wan C, Peng S, Wang L, Xu H, Aguilar ZP, Xiong Y, Zeng Z, Wei H (2013) Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochem Biophys Res Commun 439:148–153.  https://doi.org/10.1016/j.bbrc.2013.08.001 CrossRefPubMedGoogle Scholar
  66. Yoshida T, Nagasawa T (2003) Epsilon-poly-l-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol 62:21–26.  https://doi.org/10.1007/s00253-003-1312-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Han Han
    • 1
    • 2
    Email author
  • Xuemin Li
    • 1
  • Tingting Zhang
    • 3
  • Xiaoqing Wang
    • 1
  • Jiaojiao Zou
    • 1
  • Chunxia Zhang
    • 1
  • Huiling Tang
    • 1
  • Yanyan Zou
    • 1
  • Boxing Cheng
    • 1
  • Ran Wang
    • 2
  1. 1.Key Lab of Guizhou Bioresource Development and UtilizationGuizhou Education UniversityGuiyangChina
  2. 2.International Phage Research CentreJiangsu Academy of Agricultural ScienceNanjingChina
  3. 3.Graduate SchoolGuizhou Normal UniversityGuiyangChina

Personalised recommendations