Skip to main content
Log in

Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

One of the most diverse groups of bioactive bacterial metabolites is the ribosomally synthesised and post-translationally modified peptides (RiPPs) with different bioactivities. The process of genome mining has made it possible to predict the presence of such clusters among the huge genomic data available today. Despite the great potential of actinobacteria in producing natural products and the myriad of completely sequenced genomes available, a comprehensive genome mining of these bacteria for RiPPs is lacking. Here, a collection of 629 complete actinobacterial genomes were analysed to explore their RiPP biosynthesis potential. Using BAGEL3 genome mining tool, the presence of 477 RiPP biosynthesis gene clusters (BGCs) was shown, including all known classes of bacterial RiPPs. RiPP-encoding potential was shown to be widespread among different members of actinobacteria especially within the plant and soil-inhabiting strains. The notable presence of LAP BGCs in plant-associating actinobacteria was also illustrated. Streptomyces, Amycolatopsis, Kitasatospora and Frankia showed greater potential in RiPP biosynthesis while lanthipeptides and lasso peptides were the most distributed RiPPs. Three cyanobactin BGCs were also detected. Generally evidence of promising ability of actinobacteria to synthesise diverse classes of RiPPs as well as information needed to rationally select appropriate taxa for rational screening of specific RiPPs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abriouel H, Valdivia E, Martí M, Maqueda M, Gálvez A (2003) A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. liquefaciens A-48-32. J Microbiol Methods 55:599–605

    Article  CAS  PubMed  Google Scholar 

  • Agrawal P, Khater S, Gupta M, Sain N, Mohanty D (2017) RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic acids research 45:80–88

    Article  CAS  Google Scholar 

  • Allenby NE, Watts CA, Homuth G, Prágai Z, Wipat A, Ward AC, Harwood CR (2006) Phosphate starvation induces the sporulation killing factor of Bacillus subtilis. J Bacteriol 188:5299–5303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnison PG et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance Biotechnology letters 32:1559–1570

    CAS  PubMed  Google Scholar 

  • Babasaki K, Takao T, Shimonishi Y, Kurahashi K, Subtilosin A (1985) A new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603

    Article  CAS  PubMed  Google Scholar 

  • Bagley MC, Dale JW, Merritt EA, Xiong X (2005) Thiopeptide antibiotics. Chem Rev 105:685–714

    Article  CAS  PubMed  Google Scholar 

  • Bartholomae M, Buivydas A, Viel JH, Montalban-Lopez M, Kuipers OP (2017) Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis. Mol Microbiol 106:186–206

    Article  CAS  PubMed  Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385

    Article  CAS  Google Scholar 

  • Bierbaum G, Sahl H-G (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2–18

    Article  CAS  PubMed  Google Scholar 

  • Bonelli RR, Schneider T, Sahl H-G, Wiedemann I (2006) Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob Agents Chemother 50:1449–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascales L, Craik DJ (2010) Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org Biomol Chem 8:5035–5047

    Article  CAS  PubMed  Google Scholar 

  • Chertkov O et al (2011) Complete genome sequence of Thermomonospora curvata type strain (B9 T). Stand Genom Sci 4:13

    Article  CAS  Google Scholar 

  • Chun J et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  CAS  PubMed  Google Scholar 

  • Claesen J, Bibb M (2010) Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc Natl Acad Sci 107:16297–16302

    Article  PubMed  PubMed Central  Google Scholar 

  • Claesen J, Bibb MJ (2011) Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350. J Bacteriol 193:2510–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cock IE (2012) Species selection for pharmacognostic studies. Pharmacogn Mag 8:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta (BBA)-Gen Subj 1830:3670–3695

    Article  CAS  Google Scholar 

  • Czekster CM, Ge Y, Naismith JH (2016) Mechanisms of cyanobactin biosynthesis. Curr Opin Chem Biol 35:80–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangi SK, Dubey S, Bhargava S (2017) Cyanobacterial diversity: a potential source of bioactive compounds situations 3:5

    Google Scholar 

  • David B, Wolfender J-L, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14:299–315

    Article  CAS  Google Scholar 

  • Demain AL (2014) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 41:185–201

    Article  CAS  PubMed  Google Scholar 

  • Diaz M, Valdivia E, Martínez-Bueno M, Fernández M, Soler-González AS, Ramírez-Rodrigo H, Maqueda M (2003) Characterization of a new operon, as-48EFGH, from the as-48 gene cluster involved in immunity to enterocin AS-48. Appl Environ Microbiol 69:1229–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doroghazi JR, Metcalf WW (2013) Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genom 14:611

    Article  CAS  Google Scholar 

  • Draper LA, Cotter PD, Hill C, Ross RP (2015) Lantibiotic resistance. Microbiol Mol Biol Rev 79:171–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan KR et al (2015) Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem Biol 22:460–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duquesne S, Destoumieux-Garzón D, Zirah S, Goulard C, Peduzzi J, Rebuffat S (2007) Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem Biol 14:793–803

    Article  CAS  PubMed  Google Scholar 

  • Favret ME, Yousten AA (1989) Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 53:206–216

    Article  CAS  PubMed  Google Scholar 

  • Flühe L, Marahiel MA (2013) Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis. Curr Opin Chem Biol 17:605–612

    Article  CAS  PubMed  Google Scholar 

  • Gabrielsen C, Brede DA, Nes IF, Diep DB (2014) Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol 80:6854–6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes KM, Duarte RS, de Freire Bastos MDC (2017) Lantibiotics produced by Actinobacteria and their potential applications (a review). Microbiology 163:109–121

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez DJ, Clostridiolysin S et al (2010) A post-translationally modified biotoxin from Clostridium botulinum. J Biol Chem 285:28220–28228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grove TL et al (2017) Structural insights into thioether bond formation in the biosynthesis of sactipeptides. J Am Chem Soc 139:11734–11744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunatilaka A, Wijeratne E (2000) Natural products from bacteria and fungi. Elsevier, Amsterdam

    Google Scholar 

  • Hamedi J, Poorinmohammad N, Wink J (2017) The role of actinobacteria in biotechnology. In: Biology and biotechnology of actinobacteria. Springer, pp 269–328

  • Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111

    Article  CAS  PubMed  Google Scholar 

  • Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2015) Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res 48:1909–1919

    Article  CAS  PubMed  Google Scholar 

  • Hou Y et al (2012) Structure and biosynthesis of the antibiotic bottromycin D. Org Lett 14:5050–5053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson GA, Mitchell DA (2018) RiPP antibiotics: biosynthesis and engineering potential. Curr Opin Microbiol 45:61–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Just-Baringo X, Albericio F, Álvarez M (2014) Thiopeptide antibiotics: retrospective and recent advances. Mar Drugs 12:317–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X, Marahiel MA (2008) Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130:11446–11454

    Article  CAS  PubMed  Google Scholar 

  • Komiyama K et al (1993) A new antibiotic, cypemycin. J Antibiot 46:1666–1671

    Article  CAS  Google Scholar 

  • Kononova L, Filatova L, Eroshenko D, Korobov V (2017) Suppression of development of vancomycin-resistant Staphylococcus epidermidis by low-molecular-weight cationic peptides of the lantibiotic family. Microbiology 86:571–582

    Article  CAS  Google Scholar 

  • Kröber M et al (2014) Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol 5:252

    PubMed  PubMed Central  Google Scholar 

  • Li C, Kelly WL (2010) Recent advances in thiopeptide antibiotic biosynthesis. Nat Prod Rep 27:153–164

    Article  CAS  PubMed  Google Scholar 

  • Liao R et al (2009) Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications. Chem Biol 16:141–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N et al (2016) Unique post-translational oxime formation in the biosynthesis of the azolemycin complex of novel ribosomal peptides from Streptomyces sp. FXJ1. 264. Chem Sci 7:482–488

    Article  CAS  PubMed  Google Scholar 

  • Lyon WJ, Glatz BA (1993) Isolation and purification of propionicin PLG-1, a bacteriocin produced by a strain of Propionibacterium thoenii. Appl Environ Microbiol 59:83–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maksimov MO, Pan SJ, Link AJ (2012) Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 29:996–1006

    Article  CAS  PubMed  Google Scholar 

  • Martins J, Ramos V, Leão P, Vasconcelos V (2012) Cyanobactins and anticancer bioactivity of cyanobacterial extracts. Planta Med 78:PI59

    Article  CAS  Google Scholar 

  • Martin-Visscher LA, Gong X, Duszyk M, Vederas JC (2009) The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif. J Biol Chem 284:28674–28681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melby JO, Nard NJ, Mitchell DA (2011) Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr Opin Chem Biol 15:369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo T et al (2017) Biosynthetic insights into linaridin natural products from genome mining and precursor peptide mutagenesis. ACS Chem Biol 12:1484–1488

    Article  CAS  PubMed  Google Scholar 

  • Montalbán-López M, Spolaore B, Pinato O, Martínez-Bueno M, Valdivia E, Maqueda M, Fontana A (2008) Characterization of linear forms of the circular enterocin AS-48 obtained by limited proteolysis. FEBS Lett 582:3237–3242

    Article  CAS  PubMed  Google Scholar 

  • Onaka H, Tabata H, Igarashi Y, Sato Y, Furumai T (2001) Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. J Antibiot 54:1036–1044

    Article  CAS  Google Scholar 

  • Ortega MA, Van Der Donk WA (2016) New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chem Biol 23:31–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21:465–499

    Article  CAS  PubMed  Google Scholar 

  • Rateb ME et al (2015) Legonaridin, a new member of linaridin RiPP from a Ghanaian Streptomyces isolate. Org Biomol Chem 13:9585–9592

    Article  CAS  PubMed  Google Scholar 

  • Reddy TB et al (2014) The genomes online database (GOLD) v. 5: a metadata management system based on a four level (meta) genome project classification. Nucleic Acids Res 43:D1099–D1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosengren KJ, Craik DJ (2009) How bugs make lassos. Chem Biol 16:1211–1212

    Article  CAS  PubMed  Google Scholar 

  • Scholz R et al (2011) Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol 193:215–224

    Article  CAS  PubMed  Google Scholar 

  • Sievers F, Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27:135–145

    Article  CAS  PubMed  Google Scholar 

  • Sivonen K, Leikoski N, Fewer DP, Jokela J (2010) Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria. Appl Microb Biotechnol 86:1213–1225

    Article  CAS  Google Scholar 

  • Theuretzbacher U (2017) New drugs–will they solve the problem of resistance to antibiotics? Clin Microbiol Infect 23:695–696

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Udwary DW et al (2011) Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol 77:3617–3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Belkum MJ, Martin-Visscher LA, Vederas JC (2011) Structure and genetics of circular bacteriocins. Trends Microbiol 19:411–418

    Article  CAS  PubMed  Google Scholar 

  • van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP (2013) BAGEL3: automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. Nucleic Acids Res 41:448–453

    Article  Google Scholar 

  • van Heel AJ, Montalban-Lopez M, Oliveau Q, Kuipers OP (2017) Genome-guided identification of novel head-to-tail cyclized antimicrobial peptides, exemplified by the discovery of pumilarin. Microb Genom 3:1–9

    Google Scholar 

  • Waisvisz J, Van Der Hoeven M, Van Peppen J, Zwennis W (1957) Bottromycin. I. A new sulfur-containing antibiotic. J Am Chem Soc 79:4520–4521

    Article  CAS  Google Scholar 

  • Weld JT (1934) The toxic properties of serum extracts of hemolytic streptococci. J Exp Med 59:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlleben W, Mast Y, Stegmann E, Ziemert N (2016) Antibiotic drug discovery. Microb Biotechnol 9:541–548

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeiller M, Rothballer M, Iwobi AN, Böhnel H, Gessler F, Hartmann A, Schmid M (2015) Systemic colonization of clover (Trifolium repens) by Clostridium botulinum strain 2301. Front Microb 6:1207

    Article  Google Scholar 

  • Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10:625–633

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Doroghazi JR, Zhao X, Walker MC, van der Donk WA (2015a) Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in Actinobacteria. Appl Environ Microbiol 81:4339–4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Doroghazi JR, Zhao X, Walker MC, van der Donk WA (2015b) Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in Actinobacteria. Appl Environ Microbiol 81:4339–4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Fang H, Liu W (2017) Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics. Org Biomol Chem 15:3376–3390

    Article  CAS  PubMed  Google Scholar 

  • Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes–a review. Nat Prod Rep 33:988–1005

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hamedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1.

Actinobacterial strains used for RiPP-related analysis. (XLSX 44 kb)

Online Resource 2.

Habitat-based classification of the actinobacterial strains.(XLSX 50 kb)

Online Resource 3.

Relationship between predicted RiPPs’ features with phylogenetic and ecology of the studied actinobacteria (PDF 257 kb)

Online Resource 4.

Predicted RiPPs’ Open Reading Frames (ORFs) and sequences in the actinobacterial genomes.(XLSX 433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poorinmohammad, N., Bagheban-Shemirani, R. & Hamedi, J. Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Antonie van Leeuwenhoek 112, 1477–1499 (2019). https://doi.org/10.1007/s10482-019-01276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01276-6

Keywords

Navigation