Aestuariisphingobium litorale gen. nov., sp. nov., a novel proteobacterium isolated from a water sample of Pearl River estuary

Abstract

Strain SYSU M10002T was isolated from a water sample collected from the coastal region of Pearl River estuary, Guangdong Province, southern China. The taxonomic position of the isolate was investigated by polyphasic taxonomic approaches. The isolate was found to be Gram-negative, non-motile, short rods and aerobic. The strain was able to grow at 14–37 °C, pH 6.0–10.0 and in the presence of up to 0.5% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SYSU M10002T is a member of the family Sphingomonadaceae, with high sequence similarity to Sphingorhabdus buctiana T5T (95.1%). Overall genomic related indices between the genome of strain SYSU M10002T and those of related strains were low to moderate (AAI values < 64.3%; POCP values < 58%), indicating that strain SYSU M10002T represents a novel lineage within the family Sphinogomonadaceae. Strain SYSU M10002T contained homospermidine as its polyamine. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, two unidentified phospholipids and an unidentified aminolipid. Ubiquinone Q-9 (44.9%) and Q-10 (43.2%) were the dominant respiratory quinones, along with a minor amount of Q-8 (11.9%). The predominant cellular fatty acids (> 10%) identified were summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:1ω7c) and C14:0 2-OH. The genomic DNA G+C content was 64.0%. Based on the analyses of the phenotypic, genotypic and phylogenetic characteristics, strain SYSU M10002T is determined to represent a novel species of a novel genus, for which the name Aestuariisphingobium litorale gen. nov., sp. nov. is proposed. The type strain of the species is SYSU M10002T (= KCTC 52944T = NBRC 112961T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/s0022-2836(05)80360-2

    Article  CAS  Google Scholar 

  2. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppiq JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richarcharson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balkwill DL, Fredrickson JK, Romine MF (2006) Sphingomonas and related genera. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: volume 7: Proteobacteria: Delta, Epsilon Subclass. Springer, New York, pp 605–629. https://doi.org/10.1007/0-387-30747-8_23

  4. Busse J, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8. https://doi.org/10.1016/S0723-2020(88)80040-7

    Article  CAS  Google Scholar 

  5. Busse H-J, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 47:698–708. https://doi.org/10.1099/00207713-47-3-698

    CAS  Article  Google Scholar 

  6. Chen H, Piao A-L, Tan X, Nogi Y, Yeo J, Lu H, Feng Q-Q, Lv J (2018) Sphingorhabdus buctiana sp. nov., isolated from fresh water, and reclassification of Sphingopyxis contaminans as Sphingorhabdus contaminans comb. nov. Antonie Van Leeuwenhoek 111:323–331. https://doi.org/10.1007/s10482-017-0954-z

    Article  CAS  PubMed  Google Scholar 

  7. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  8. Cui H-L, Lin Z-Y, Dong Y, Zhou P-J, Liu S-J (2007) Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206. https://doi.org/10.1099/ijs.0.65268-0

    Article  CAS  PubMed  Google Scholar 

  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/bf01734359

    Article  CAS  Google Scholar 

  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.2307/2408678

    Article  Google Scholar 

  11. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  PubMed  Google Scholar 

  12. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.2307/2412116

    Article  Google Scholar 

  13. Gich F, Overmann J (2006) Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. Int J Syst Evol Microbiol 56:847–854. https://doi.org/10.1099/ijs.0.63970-0

    Article  CAS  PubMed  Google Scholar 

  14. Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66:5053–5065. https://doi.org/10.1128/aem.66.11.5053-5065.2000

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715

    Article  CAS  PubMed  Google Scholar 

  16. Groth I, Schumann P, Weiss N, Martin K, Rainey FA (1996) Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Evol Microbiol 46:234–239. https://doi.org/10.1099/00207713-46-1-234

    CAS  Article  Google Scholar 

  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:91–98

    Google Scholar 

  18. Harrison PG, Strulo B (2000) SPADES—a process algebra for discrete event simulation. J Logic Comput 10:3–42. https://doi.org/10.1093/logcom/10.1.3

    Article  Google Scholar 

  19. Hua Z-S, Qu Y-N, Zhu Q, Zhou E-M, Qi Y-L, Yin Y-R, Rao Y-Z, Tian Y, Li Y-X, Liu L, Castelle CJ, Hedlun BP, Shu W-S, Knight R, Li W-J (2018) Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat Commun 9:2832. https://doi.org/10.1038/s41467-018-05284-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jogler M, Chen H, Simon J, Rohde M, Busse H-J, Klenk H-P, Tindall BJ, Overmann J (2013) Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. Int J Syst Evol Microbiol 63:1342–1349. https://doi.org/10.1099/ijs.0.043133-0

    Article  PubMed  Google Scholar 

  22. Kalnenieks U (2006) Physiology of Zymomonas mobilis: some unanswered questions. In: Poole RK (ed) Advances in microbial physiology, vol 51. Academic Press, Cambridge, pp 73–117. https://doi.org/10.1016/s0065-2911(06)51002-1

  23. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  Google Scholar 

  24. Kim MK, Schubert K, Im W-T, Kim K-H, Lee S-T, Overmann J (2007) Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int J Syst Evol Microbiol 57:1527–1534. https://doi.org/10.1099/ijs.0.64579-0

    Article  CAS  PubMed  Google Scholar 

  25. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  26. Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K et al (2000) Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 44:563–575. https://doi.org/10.1111/j.1348-0421.2000.tb02535.x

    Article  CAS  PubMed  Google Scholar 

  27. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704. https://doi.org/10.1038/178703a0

    Article  CAS  PubMed  Google Scholar 

  28. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leifson E (1960) Atlas of bacterial flagellation. Academic Press, New York

    Google Scholar 

  30. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R, Xu L-H, Stackebrandt E, Jiang C-L (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428. https://doi.org/10.1099/ijs.0.64749-0

    Article  PubMed  Google Scholar 

  31. Mac Faddin JF (1976) Biochemical tests for identification of medical bacteria. Williams & Wilkins Co., Baltimore

    Google Scholar 

  32. Ming H, Nie G-X, Jiang H-C, Yu T-T, Zhou E-M, Feng H-G, Tang S-K, Li W-J (2012) Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie van Leeuwenhoek 102:297–305. https://doi.org/10.1007/s10482-012-9738-7

    Article  CAS  PubMed  Google Scholar 

  33. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95. https://doi.org/10.1111/j.1365-2672.1979.tb01172.x

    Article  CAS  Google Scholar 

  34. Nie G-X, Ming H, Li S, Zhou E-M, Cheng J, Tang X, Feng H-G, Tang S-K, Li W-J (2012) Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 62:2650–2656. https://doi.org/10.1099/ijs.0.038125-0

    Article  CAS  PubMed  Google Scholar 

  35. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C, Zhou J, Oren A, Zhang Y-X (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196:2210–2215. https://doi.org/10.1128/jb.01688-14

    Article  PubMed  PubMed Central  Google Scholar 

  36. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  37. Sasser M (2001) Identification of bacteria by gas chromatography of cellular fatty acids. http://www.microbialid.com/PDF/TechNote_101.pdf

  38. Sheu S-Y, Liu L-P, Young C-C, Chen W-M (2017) Novosphingobium fontis sp. nov., isolated from a spring. Int J Syst Evol Microbiol 67:2423–2429. https://doi.org/10.1099/ijsem.0.001973

    Article  CAS  PubMed  Google Scholar 

  39. Sly LI, Cahill MM (1997) Transfer of Blastobacter natatorius (Sly 1985) to the genus Blastomonas gen. nov. as Blastomonas natatoria comb. nov. Int J Syst Evol Microbiol 47:566–568. https://doi.org/10.1099/00207713-47-2-566

    CAS  Article  Google Scholar 

  40. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takeuchi M, Kawai F, Shimada Y, Yokota A (1993) Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16:227–238. https://doi.org/10.1016/S0723-2020(11)80473-X

    Article  CAS  Google Scholar 

  42. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417. https://doi.org/10.1099/00207713-51-4-1405

    Article  CAS  Google Scholar 

  43. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28. https://doi.org/10.1093/nar/29.1.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, 3rd edn. American Society of Microbiology, Washington DC, pp 330–393. https://doi.org/10.1128/9781555817497.ch15

  46. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (No. 31528001). X. Mou was supported by the Ohio Board of Regents (sub-award no. 60049296). W.-J. Li was also supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2014).

Author information

Affiliations

Authors

Contributions

N.S. and W.J.L. conceived the study. X.L., J.L.L, X.T.Z., N.S., L.D. and M.D.A. performed research. N.S., X.M. and M.X. analyzed data. X.L., N.S. and W.J.L. wrote the paper. All authors approved the manuscript.

Corresponding authors

Correspondence to Nimaichand Salam or Wen-Jun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 600 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, JL., Zhang, XT. et al. Aestuariisphingobium litorale gen. nov., sp. nov., a novel proteobacterium isolated from a water sample of Pearl River estuary. Antonie van Leeuwenhoek 112, 1357–1367 (2019). https://doi.org/10.1007/s10482-019-01268-6

Download citation

Keywords

  • Aestuariisphingobium litorale gen. nov., sp. nov.
  • Polyphasic taxonomy
  • Pearl River estuary