Skip to main content
Log in

Chitinophaga aurantiaca sp. nov., isolated from a soil sample from a tangerine field

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, facultatively anaerobic, non-motile and rod-shaped bacterial strain, designated THG-SD5.5T, was isolated from a soil sample collected in a tangerine field, Republic of Korea. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Chitinophaga and to be closely related to Chitinophaga ginsengihumi KACC 17604T (97.9%) and Chitinophaga rupis KACC 14521T (97.5%). The 16S rRNA gene sequence similarities with other species of the genus Chitinophaga were in the range 92.8–95.5%. Catalase test was positive. Oxidase test was negative. The DNA G + C content was determined to be 46.1 mol%. DNA-DNA hybridization values between strain THG-SD5.5T and C. ginsengihumi KACC 17604T and C. rupis KACC 14521T were 45.1% and 15.6%, respectively. Strain THG-SD5.5T was also found to be able to grow at 24–33 °C, at 0–5% NaCl and at pH 5.5–9.0. The major fatty acids were identified as anteiso-C15:0, C16:0, anteiso-C17:0 and C18:0. The dominant respiratory quinone was identified as menaquinone-7 (MK-7). The polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid, two unidentified phospholipids and three unidentified lipids. Based on these phenotypic, genotypic and phylogenetic characterisations, strain THG-SD5.5T (= KACC 19338T = CGMCC 1.16304T) is concluded to represent a novel species of the genus Chitinophaga, for which the name Chitinophaga aurantiaca sp. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung EJ, Park TS, Jeon CO, Chung YR (2012) Chitinophaga oryziterrae sp. nov., isolated from the rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol 62:3030–3035

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. Fems Microbiol Lett 8:87–91

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han SI, Lee HJ, Whang KS (2014) Chitinophaga polysaccharea sp. nov., an exopolysaccharide-producing bacterium isolated from the rhizoplane of Dioscorea japonica. Int J Syst Evol Microbiol 64:55–59

    Article  CAS  PubMed  Google Scholar 

  • Hu HY, Lim BR, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47:17–24

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P, Young CC, Sridhar KR, Arun AB, Lai WA, Shen FT, Rekha PD (2006) Transfer of Flexibacter sancti, Flexibacter filiformis, Flexibacter japonensis and Cytophaga arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol 56:2223–2228

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Jung HY (2007) Chitinophaga terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:1721–1724

    Article  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Whang KS (2014) Chitinophaga ginsengihumi sp. nov., isolated from soil of ginseng rhizosphere. Int J Syst Ecol Microbiol 64:2599–2604

    Article  CAS  Google Scholar 

  • Lee HG, An DS, Im WT, Liu QM, Na JR, Cho DH, Jin CW, Lee ST, Yang DC (2007) Chitinophaga ginsengisegetis sp. nov. and Chitinophaga ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 57:1396–1401

    Article  PubMed  Google Scholar 

  • Lee DW, Lee EJ, Lee SD (2009) Chitinophaga rupis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:2830–2833

    Article  CAS  PubMed  Google Scholar 

  • Li L, Sun L, Shi N, Liu L, Guo HJ, Xu AF, Zhang XX, Yao N (2013) Chitinophaga cymbidii sp. nov., isolated from Cymbidium goeringii roots. Int J Syst Evol Microbiol 63:1800–1804

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Proenca DN, Nobre MF, Morais PV (2014) Chitinophaga costaii sp. nov., an endophyte of Pinus pinaster, and emended description of Chitinophaga niabensis. Int J Syst Evol Microbiol 64:1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E, Raoult D, Fournier PE (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64:384–391

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sangkhobol V, Skerman VBD (1981) Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol 31:285–293

    Article  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE

  • Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifano P (2008) Epibiotic Vibrio luminous bacteria isolated from some Hydrozoa and Bryozoa species. Microb Ecol 56:625–636

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Cheng C, He LY, Huang Z, Sheng XF (2014) Chitinophaga jiangningensis sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 64:260–265

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weon HY, Yoo SH, Kim YJ, Son JA, Kim BY, Kwon SW, Koo BS (2009) Chitinophaga niabensis sp. nov. and Chitinophaga niastensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Yan ZF, Trinh H, Moya G, Lin P, Li CT, Kook MC, Yi TH (2015) Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the nationalflower of South Korea. Int J Syst Evol Microbiol 66:4754–4759

    Google Scholar 

  • Yasir M, Chung EJ, Song GC, Bibi F, Jeon CO, Chung YR (2011) Chitinophaga eiseniae sp. nov., isolated from vermicompost. Int J Syst Evol Microbiol 61:2373–2378

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ012655042018)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hoo Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no direct or indirect conflict of interest.

Ethical standards

This is the original work of the authors. The work described has not been submitted elsewhere for publication, in whole or in part, and all authors listed carry out the data analysis and manuscript writing and “This article does not contain any studies with human participants or animals performed by any of the authors”. Moreover, all authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Su-Kyung Kim and MooChang Kook are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Kook, M., Yan, ZF. et al. Chitinophaga aurantiaca sp. nov., isolated from a soil sample from a tangerine field. Antonie van Leeuwenhoek 112, 1189–1197 (2019). https://doi.org/10.1007/s10482-019-01251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01251-1

Keywords

Navigation