Identification of amino acids negatively affecting Fusarium trichothecene biosynthesis

Abstract

Nitrogen sources in media have a significant impact on the onset of secondary metabolism in fungi. For transcriptional activation of many nitrogen catabolic genes, an AreA transcription factor is indispensable. This also holds true for Fusarium graminearum that produces trichothecenes, an important group of mycotoxin, in axenic culture. Despite the presence of numerous consensus AreA-binding sites in the promoters of Tri genes in the trichothecene cluster core region, the effect of medium amino acids on trichothecene biosynthesis is poorly understood. In this study, we examined the effect of certain amino acids, which were predicted to activate AreA function and increase Tri gene transcription, on trichothecene production in liquid culture. By frequent monitoring and adjustments in the pH of the culture medium, including replacement of the spent medium with fresh medium, we demonstrate the suppressive effects of the amino acids, used as the sole nitrogen source, on trichothecene biosynthesis. When the medium pH was maintained at 4.0, Gly, l-Ser, and l-Thr suppressed trichothecene production by F. graminearum. Enhanced trichothecene-inducing effects were observed when the medium pH was 3.5, with only l-Thr suppressing trichothecene synthesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Boutigny AL, Barreau C, Atanasova-Penichon V, Verdal-Bonnin MN, Pinson-Gadais L, Richard-Forget F (2009) Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol Res 113:746–753. https://doi.org/10.1016/j.mycres.2009.02.010

    Article  CAS  PubMed  Google Scholar 

  2. Etzerodt T, Maeda K, Nakajima Y, Laursen B, Fomsgaard IS, Kimura M (2015) 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression. Int J Food Microbiol 214:123–128. https://doi.org/10.1016/j.ijfoodmicro.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  3. Gardiner DM, Kazan K, Manners JM (2009a) Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet Biol 46:604–613. https://doi.org/10.1016/j.fgb.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  4. Gardiner DM, Osborne S, Kazan K, Manners JM (2009b) Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology 155:3149–3156. https://doi.org/10.1099/mic.0.029546-0

    Article  CAS  PubMed  Google Scholar 

  5. Gardiner DM, Stiller J, Kazan K (2014) Genome sequence of Fusarium graminearum isolate CS3005. Genome Announc 2:e00227-00214. https://doi.org/10.1128/genomeA.00227-14

    Article  Google Scholar 

  6. Giese H, Sondergaard TE, Sørensen JL (2013) The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fungal Biol 117:814–821. https://doi.org/10.1016/j.funbio.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  7. Hou R, Jiang C, Zheng Q, Wang C, Xu JR (2015) The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Mol Plant Pathol 16:987–999. https://doi.org/10.1111/mpp.12254

    Article  CAS  PubMed  Google Scholar 

  8. Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123. https://doi.org/10.1271/bbb.70183

    Article  CAS  PubMed  Google Scholar 

  9. Kitou Y, Kosaki T, Maeda K, Tanahashi Y, Nakajima Y, Kanamaru K, Kobayashi T, Kimura M (2016) Trichothecene production in axenic liquid culture of Fusarium graminearum using xylose as a carbon source. JSM Mycotoxins 66:17–19. https://doi.org/10.2520/myco.66.17

    Article  CAS  Google Scholar 

  10. Maeda K, Nakajima Y, Tanahashi Y, Kitou Y, Miwa A, Kanamaru K, Kobayashi T, Nishiuchi T, Kimura M (2017) L-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum. Arch Microbiol 199:945–952. https://doi.org/10.1007/s00203-017-1364-3

    Article  CAS  PubMed  Google Scholar 

  11. Merhej J, Richard-Forget F, Barreau C (2011) Regulation of trichothecene biosynthesis in Fusarium: recent advances and new insights. Appl Microbiol Biotechnol 91:519–528. https://doi.org/10.1007/s00253-011-3397-x

    Article  CAS  PubMed  Google Scholar 

  12. Min K, Shin Y, Son H, Lee J, Kim JC, Choi GJ, Lee YW (2012) Functional analyses of the nitrogen regulatory gene areA in Gibberella zeae. FEMS Microbiol Lett 334:66–73. https://doi.org/10.1111/j.1574-6968.2012.02620.x

    Article  CAS  PubMed  Google Scholar 

  13. Moretti A, Susca A, Mule G, Logrieco AF, Proctor RH (2013) Molecular biodiversity of mycotoxigenic fungi that threaten food safety. Int J Food Microbiol 167:57–66. https://doi.org/10.1016/j.ijfoodmicro.2013.06.033

    Article  CAS  PubMed  Google Scholar 

  14. Nakajima Y, Maeda K, Jin Q, Takahashi-Ando N, Kanamaru K, Kobayashi T, Kimura M (2016) Oligosaccharides containing an α-(1 → 2) (glucosyl/xylosyl)-fructosyl linkage as inducer molecules of trichothecene biosynthesis for Fusarium graminearum. Int J Food Microbiol 238:215–221. https://doi.org/10.1016/j.ijfoodmicro.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  15. Ponts N, Couedelo L, Pinson-Gadais L, Verdal-Bonnin M-N, Barreau C, Richard-Forget F (2009) Fusarium response to oxidative stress by H2O2 is trichothecene chemotype-dependent. FEMS Microbiol Lett 293:255–262. https://doi.org/10.1111/j.1574-6968.2009.01521.x

    Article  CAS  PubMed  Google Scholar 

  16. Ponts N, Pinson-Gadais L, Boutigny AL, Barreau C, Richard-Forget F (2011) Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathology 101:929–934. https://doi.org/10.1094/Phyto-09-10-0230

    Article  CAS  PubMed  Google Scholar 

  17. Proctor RH, Hohn TM, McCormick SP, Desjardins AE (1995) Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microbiol 61:1923–1930

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka Y, Nakajima Y, Maeda K, Matsuyama M, Kanamaru K, Kobayashi T, Ohsato S, Kimura M (2019) Inhibition of Fusarium trichothecene biosynthesis by yeast extract components extractable with ethyl acetate. Int J Food Microbiol 289:24–29. https://doi.org/10.1016/j.ijfoodmicro.2018.08.026

    Article  CAS  PubMed  Google Scholar 

  19. Todd RB, Fraser JA, Wong KH, Davis MA, Hynes MJ (2005) Nuclear accumulation of the GATA factor AreA in response to complete nitrogen starvation by regulation of nuclear export. Eukaryot Cell 4:1646–1653. https://doi.org/10.1128/EC.4.10.1646-1653.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wong KH, Hynes MJ, Davis MA (2008) Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot Cell 7:917–925. https://doi.org/10.1128/EC.00076-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (Research program on development of innovative technology) (grant number 28007A) and Kieikai Research Foundation (grant number 2017S056).

Author information

Affiliations

Authors

Contributions

YN, KM, KK, TK, and MK designed study, TS, YN, KM, MA, YK, and TN performed research, TS, YN, KM, SO, TN and MK analyzed data, and MK wrote the paper.

Corresponding author

Correspondence to Makoto Kimura.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1410 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shiobara, T., Nakajima, Y., Maeda, K. et al. Identification of amino acids negatively affecting Fusarium trichothecene biosynthesis. Antonie van Leeuwenhoek 112, 471–478 (2019). https://doi.org/10.1007/s10482-018-1172-z

Download citation

Keywords

  • AreA transcription factor
  • Defined medium
  • Fed-batch culture
  • Mycotoxin biosynthesis
  • Secondary metabolite
  • Threonine metabolism