Novel antimicrobial peptides produced by Candida intermedia LAMAP1790 active against the wine-spoilage yeast Brettanomyces bruxellensis

Abstract

Brettanomyces bruxellensis negatively impacts on the sensorial quality of wine by producing phenolic compounds associated with unpleasant odors. Thus, the control of this spoilage yeast is a critical factor during the winemaking process. A recent approach used to biocontrol undesired microorganisms is the use of yeast released antimicrobial peptides (AMPs), but this strategy has been poorly applied to wine-related microorganisms. The aim of this study was to evaluate the antifungal capacity of Candida intermedia LAMAP1790 against wine-spoilage strains of B. bruxellensis and fermentative strains of Saccharomyces cerevisiae, and also to determine the chemical nature of the compound. The exposure of strains to the supernatant of C. intermedia saturated cultures showed antifungal activity against B. bruxellensis, without affecting the growth of S. cerevisiae. By fractionation and concentration of C. intermedia supernatants, it was determined that the antifungal activity was related to the presence of heat-labile peptides with molecular masses under 5 kDa. To our knowledge, this is the first report of AMPs secreted by C. intermedia that control B. bruxellensis. This could lead to the development of new biocontrol strategies against this wine-spoilage yeast.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Acuña-Fontecilla A, Silva-Moreno E, Ganga MA, Godoy L (2017) Evaluation of antimicrobial activity from native wine yeast against food industry pathogenic microorganisms. CYTA J Food 15(3):457–465

    Article  CAS  Google Scholar 

  2. Albergaria H, Francisco D, Gori K, Arneborg N, Gírio F (2010) Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains. Appl Microbiol Biotechnol 86(3):965–972

    Article  CAS  PubMed  Google Scholar 

  3. Avramova M, Cibrario A, Peltier E, Coton M, Coton E et al (2018) Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Sci Rep 8(1):1–13

    Article  CAS  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  5. Branco P, Francisco D, Chambon C, Hébraud M, Arneborg N et al (2014) Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl Microbiol Biotechnol 98(2):843–853

    Article  CAS  PubMed  Google Scholar 

  6. Branco P, Viana T, Albergaria H, Arneborg N (2015) Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells. Int J Food Microbiol 205:112–118

    Article  CAS  PubMed  Google Scholar 

  7. Branco P, Francisco D, Monteiro M, Almeida MG, Caldeira J et al (2017) Antimicrobial properties and death-inducing mechanisms of saccharomycin, a biocide secreted by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 101(1):159–171

    Article  CAS  PubMed  Google Scholar 

  8. Comitini F, De Ingeniis J, Pepe L, Mannazzu I, Ciani M (2004) Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238(1):235–240

    Article  CAS  PubMed  Google Scholar 

  9. Coronado P, Aguilera S, Carmona L, Godoy L, Martínez C et al (2015) Comparison of the behaviour of Brettanomyces bruxellensis strain LAMAP L2480 growing in authentic and synthetic wines. Antonie Leeuwenhoek 107(5):1217–1223

    Article  CAS  PubMed  Google Scholar 

  10. Curtin CD, Borneman AR, Chambers PJ, Pretorius IS (2012) De-novo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499. PLoS ONE 7(3):1–10

    Article  CAS  Google Scholar 

  11. Devalia JL, Rusznak C, Herdman MJ, Trigg CJ, Davies RJ et al (1994) Effect of nitrogen dioxide and sulphur dioxide on airway response of mild asthmatic patients to allergen inhalation. Lancet 344(8938):1668–1671

    Article  CAS  PubMed  Google Scholar 

  12. Enrique M, Marcos JF, Yuste M, Martínez M, Vallés S et al (2007) Antimicrobial action of synthetic peptides towards wine spoilage yeasts. Int J Food Microbiol 118(3):318–325

    Article  CAS  PubMed  Google Scholar 

  13. Fabrizio V, Vigentini I, Parisi N, Picozzi C, Compagno C et al (2015) Heat inactivation of wine spoilage yeast Dekkera bruxellensis by hot water treatment. Lett Appl Microbiol 61(2):186–191

    Article  CAS  PubMed  Google Scholar 

  14. Ganga MA, Martínez C (2004) Effect of wine yeast monoculture practice on the biodiversity of non-Saccharomyces yeasts. J Appl Microbiol 96(1):76–83

    Article  CAS  PubMed  Google Scholar 

  15. Godoy L, Vera-Wolf P, Martinez C, Ugalde JA, Ganga MA (2016) Comparative transcriptome assembly and genome-guided profiling for Brettanomyces bruxellensis LAMAP2480 during p-coumaric acid stress. Sci Rep 6:1–13

    Article  CAS  Google Scholar 

  16. Godoy L, Silva-Moreno E, Mardones W, Guzman D, Cubillos FA et al (2017) Genomics perspectives on metabolism, survival strategies, and biotechnological applications of Brettanomyces bruxellensis LAMAP2480. J Mol Microbiol Biotechnol 27(3):147–158

    Article  CAS  PubMed  Google Scholar 

  17. González-Arenzana L, Sevenich R, Rauh C, López R, Knorr D et al (2016) Inactivation of Brettanomyces bruxellensis by high hydrostatic pressure technology. Food Control 59:188–195

    Article  CAS  Google Scholar 

  18. Hellborg L, Piškur J (2009) Complex nature of the genome in a wine spoilage yeast, Dekkera bruxellensis. Eukaryot Cell 8(11):1739–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liti G, Carter DM, Moses AM, Warringer J, Parts L et al (2009) Population genomics of domestic and wild yeasts. Nature 458(7236):337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788(8):1687–1692

    Article  CAS  PubMed  Google Scholar 

  21. Mehlomakulu NN, Setati ME, Divol B (2014) Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Int J Food Microbiol 188:83–91

    Article  CAS  PubMed  Google Scholar 

  22. Mehlomakulu NN, Prior KJ, Setati ME, Divol B (2017) Candida pyralidae killer toxin disrupts the cell wall of Brettanomyces bruxellensis in red grape juice. J Appl Microbiol 122(3):747–758

    Article  CAS  PubMed  Google Scholar 

  23. Narayanan TK, Rao GR (1976) Beta-indoleethanol and beta-indolelactic acid production by Candida species: their antibacterial and autoantibiotic action. Antimicrob Agents Chemother 9(3):375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oelofse A, Pretorius IS, du Toit M (2008) Significance of Brettanomyces and Dekkera during winemaking: a synoptic review. S Afr J Enol Vitic 29(2):128–144

    CAS  Google Scholar 

  25. Piškur J, Ling Z, Marcet-Houben M, Ishchuk OP, Aerts A et al (2012) The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. Int J Food Microbiol 157(2):202–209

    Article  CAS  PubMed  Google Scholar 

  26. Puértolas E, López N, Condón S, Raso J, Álvarez I (2009) Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int J Food Microbiol 130(1):49–55

    Article  CAS  PubMed  Google Scholar 

  27. Roostita LB, Fleet GH, Wendry SP, Apon ZM, Gemilang LU (2011) Determination of yeasts antimicrobial activity in milk and meat products. Adv J Food Sci Technol 3(6):442–445

    CAS  Google Scholar 

  28. Schägger H (2006) Tricine-SDS-PAGE. Nat Protocols 1(1):16–22

    Article  CAS  PubMed  Google Scholar 

  29. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379

    Article  Google Scholar 

  30. Valdes J, Tapia P, Cepeda V, Varela J, Godoy L et al (2014) Draft genome sequence and transcriptome analysis of the wine spoilage yeast Dekkera bruxellensis LAMAP2480 provides insights into genetic diversity, metabolism and survival. FEMS Microbiol Lett 361(2):104–106

    Article  CAS  PubMed  Google Scholar 

  31. Vigentini I, Lucy Joseph CM, Picozzi C, Foschino R, Bisson LF (2013) Assessment of the Brettanomyces bruxellensis metabolome during sulphur dioxide exposure. FEMS Yeast Res 13(7):597–608

    Article  CAS  PubMed  Google Scholar 

  32. Warringer J, Zörgö E, Cubillos FA, Zia A, Gjuvsland A et al (2011) Trait variation in yeast is defined by population history. PLoS Genet 7(6):e1002111. https://doi.org/10.1371/journal.pgen.1002111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Younis G, Awad A, Dawod RE, Yousef NE (2017) Antimicrobial activity of yeasts against some pathogenic bacteria. Vet World 10(8):979–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang L, Gallo RL (2016) Antimicrobial peptides. Curr Biol 26(1):R14–R19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by Proyecto Fortalecimiento USACH USA 1398_GM181622 Grant. Rubén Peña is funded by the Comisión Nacional de Investigación Científica y Tecnológica CONICYT-PCHA/Doctorado Nacional/2013-21130439 Doctoral Fellowship.

Author information

Affiliations

Authors

Contributions

MAG conceived and designed the study. RP performed research and analyzed data. MAG and RP wrote the paper.

Corresponding author

Correspondence to María Angélica Ganga.

Ethics declarations

Conflict of interest

The authors hereby declare they do not have any conflict of interest associated to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peña, R., Ganga, M.A. Novel antimicrobial peptides produced by Candida intermedia LAMAP1790 active against the wine-spoilage yeast Brettanomyces bruxellensis. Antonie van Leeuwenhoek 112, 297–304 (2019). https://doi.org/10.1007/s10482-018-1159-9

Download citation

Keywords

  • Antimicrobial peptides
  • Antifungal activity
  • Biocontrol
  • Brettanomyces bruxellensis
  • Candida intermedia
  • Wine-spoilage yeasts