Skip to main content
Log in

Description of Hymenobacter daejeonensis sp. nov., isolated from grass soil, based on multilocus sequence analysis of the 16S rRNA gene, gyrB and tuf genes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A polyphasic taxonomic study was carried out on strains PB105T and PB108 isolated from a grass soil in Korea. The cells of the strains were Gram-stain negative, non-spore-forming, non-motile, and rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of these strains with Bacteroidetes, which showed high pairwise sequence similarities with Hymenobacter algoricola VUG-A23aT (99.2%), Hymenobacter fastidiosus VUG-A124aT (97.4%), and Hymenobacter daecheongensis Dae14T (96.9%). The phylogenetic analysis based on 16S rRNA gene sequences showed that the strains formed a clear phylogenetic lineage with the genus Hymenobacter. The major fatty acids were identified as C15:0 iso, C15:0 anteiso, C16:1 ω5c, C15:0 iso 3-OH, C17:0 iso 3-OH, summed feature 3 (C16:1 ω6c and/or C16:1 ω7c/t), and summed feature 4 (C17:1 anteiso B and/or C17:1 iso I). The major cellular polar lipids were identified as phosphatidylethanolamine, an unidentified aminolipid, and two unidentified lipids. The respiratory quinone was identified as MK-7 and the genomic DNA G+C content was determined to be 64.5 mol% for strain PB105T and 64.1 mol% for strain PB108. DNA–DNA hybridization value of type strain PB105T with H. algoricola VUG-A23aT was 32.3% (reciprocal 39.2). Based on the combined genotypic and phenotypic data, we propose that strains PB105T and PB108 represent a novel species of the genus Hymenobacter, for which the name Hymenobacter daejeonensis sp. nov. is proposed. The type strain is PB105T (= KCTC 52579T = JCM 31885T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Buczolits S, Denner EB, Kämpfer P, Busse HJ (2006) Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelupurpurascens’ and ‘Taxeobacter chitinovorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 56:2071–2078

    Article  CAS  Google Scholar 

  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  Google Scholar 

  • Dai J, Wang Y, Zhang L, Tang Y, Luo X, An H, Fang C (2009) Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai–Tibet plateau. Syst Appl Microbiol 32:543–548

    Article  CAS  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han J, Ten LN, Lee DH, Kang IK, Jung HY (2018) Hymenobacter agri sp. nov., a novel bacterium isolated from soil. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-018-1070-4

    Article  PubMed  Google Scholar 

  • Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the cytophaga/flavobacterium/bacteroides line of phylogenetic descent. Syst Appl Microbiol 21:374–383

    Article  CAS  Google Scholar 

  • Jin L, Lee HG, Kim SG, Lee KC, Ahn CY, Oh HM (2014a) Hymenobacter ruber sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 64:979–983

    Article  CAS  Google Scholar 

  • Jin L, Lee HG, La HJ, Ko SR, Ahn CY, Oh HM (2014b) Ferruginibacter profundus sp. nov., a novel member of the family Chitinophagaceae, isolated from freshwater sediment of a reservoir. Antonie Van Leeuwenhoek 106:319–323

    Article  CAS  Google Scholar 

  • Kim KH, Im WT, Lee ST (2008) Hymenobacter soli sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 58:941–945

    Article  CAS  Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  Google Scholar 

  • Klassen JL, Foght JM (2011) Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 15:45–57

    Article  Google Scholar 

  • Kojima H, Watanabe M, Tokizawa R, Shinohara A, Fukui M (2016) Hymenobacter nivis sp. nov., isolated from red snow in Antarctica. Int J Syst Evol Microbiol 66:4821–4825

    Article  Google Scholar 

  • Komagata K, Suzuki KI (1988) Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester

    Google Scholar 

  • Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, Bergeron MG (2001) Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol 39:2541–2547

    Article  CAS  Google Scholar 

  • Rosselló-Móra R, Amann R (2015) Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 38:209–216

    Article  Google Scholar 

  • Rosselló-móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Syst Appl Microbiol 40:121–122

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method; a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse HJ, Staňková E, Vrbovská V, Němec M, Barták M, Holochová P, Švec P, Pantůček R (2017) Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int J Syst Evol Microbiol 67:1975–1983

    Article  Google Scholar 

  • Sheu SY, Li YS, Young CC, Chen WM (2017) Hymenobacter pallidus sp. nov., isolated from a freshwater fish culture pond. Int J Syst Evol Microbiol 67:2915–2921

    Article  Google Scholar 

  • Srinivasan S, Lee JJ, Park KR, Park SH, Jung HY, Kim MK (2015) Hymenobacter terrae sp. nov., a bacterium isolated from soil. Curr Microbiol 70:643–650

    Article  CAS  Google Scholar 

  • Subhash Y, Sasikala Ch, Ramana ChV (2014) Hymenobacter roseus sp. nov., isolated from sand. Int J Syst Evol Microbiol 64:4129–4133

    Article  CAS  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reverse-phased high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Tarrand JJ, Groschel DHM (1982) Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ten LN, Lee YH, Lee JJ, Park SJ, Lee SY, Park S, Lee DS, Kang IK, Jung HY (2017) Hymenobacter daeguensis sp. nov. isolated from river water. J Microbiol 55:253–259

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tindall BJ (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    Article  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Xu JL, Liu QM, Yu HS, Jin FX, Lee ST, Im WT (2009) Hymenobacter daecheongensis sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 59:1183–1187

    Article  CAS  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  Google Scholar 

  • Zhang Q, Liu C, Tang Y, Zhou G, Shen P, Fang C, Yokota A (2007) Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 57:1752–1756

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported the Basic Core Technology Development Program for the Oceans and the Polar Regions of the National Research Foundation (NRF-2016M1A5A1027453) by the Ministry of Science and ICT, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP; Ministry of Science, ICT & Future Planning) (NRF-2018R1C1B3009513), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hee-Mock Oh or Hyung-Gwan Lee.

Ethics declarations

Conflict of interest

The authors declare that the study was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Wu, X., Ko, SR. et al. Description of Hymenobacter daejeonensis sp. nov., isolated from grass soil, based on multilocus sequence analysis of the 16S rRNA gene, gyrB and tuf genes. Antonie van Leeuwenhoek 111, 2283–2292 (2018). https://doi.org/10.1007/s10482-018-1119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1119-4

Keywords

Navigation