Advertisement

Cadophora margaritata sp. nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland

  • Riikka Linnakoski
  • Risto Kasanen
  • Ilmeini Lasarov
  • Tiia Marttinen
  • Abbot O. Oghenekaro
  • Hui Sun
  • Fred O. Asiegbu
  • Michael J. Wingfield
  • Jarkko Hantula
  • Kari Heliövaara
Original Paper
  • 3 Downloads

Abstract

Symbiosis with microbes is crucial for survival and development of wood-inhabiting longhorn beetles (Coleoptera: Cerambycidae). Thus, knowledge of the endemic fungal associates of insects would facilitate risk assessment in cases where a new invasive pest occupies the same ecological niche. However, the diversity of fungi associated with insects remains poorly understood. The aim of this study was to investigate fungi associated with the native large poplar longhorn beetle (Saperda carcharias) and the recently introduced Asian longhorn beetle (Anoplophora glabripennis) infesting hardwood trees in Finland. We studied the cultivable fungal associates obtained from Populus tremula colonised by S. carcharias, and Betula pendula and Salix caprea infested by A. glabripennis, and compared these to the samples collected from intact wood material. This study detected a number of plant pathogenic and saprotrophic fungi, and species with known potential for enzymatic degradation of wood components. Phylogenetic analyses of the most commonly encountered fungi isolated from the longhorn beetles revealed an association with fungi residing in the CadophoraMollisia species complex. A commonly encountered fungus was Cadophora spadicis, a recently described fungus associated with wood-decay. In addition, a novel species of Cadophora, for which the name Cadophora margaritata sp. nov. is provided, was isolated from the colonised wood.

Keywords

1 New taxon Alien invasive species Cadophora sp. Introduced species Insect–fungus symbiosis Longhorn beetles Vectored pathogen 

Notes

Acknowledgements

This study was financially supported by the University of Helsinki (RL); the Academy of Finland (FOA); the members of the Tree Protection Co-operative Programme (TPCP) and the THRIP initiative of the Department of Trade and Industry (RL, MJW), South Africa. We acknowledge the staff at the Finnish Food Safety Authority (Evira) for their support to this study.

Funding

This study was funded by the University of Helsinki (RL); the Academy of Finland (FOA), the members of the Tree Protection Co-operative Programme (TPCP) and the THRIP initiative of the Department of Trade and Industry (RL, MJW), South Africa.

Conflict of interest

The authors declare that have no conflict of interest.

Supplementary material

10482_2018_1112_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)

References

  1. Akbulut S, Stamps WT (2012) Insect vectors of the pinewood nematode: a review of the biology and ecology of Monochamus species. For Pathol 42:89–99.  https://doi.org/10.1111/j.1439-0329.2011.00733.x CrossRefGoogle Scholar
  2. Albrectsen BR, Björkén L, Varad A, Hagner Å, Wedin M, Karlsson J, Jansson S (2010) Endophytic fungi in European aspen (Populus tremula) leaves—diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28CrossRefGoogle Scholar
  3. Ayayee P, Rosa C, Ferry JG, Felton GW, Saunders M, Hoover K (2014) Gut microbes contribute to nitrogen provisioning in a wood-feeding cerambycid. Environ Entomol 43:903–912.  https://doi.org/10.1603/EN14045 CrossRefPubMedGoogle Scholar
  4. Blanchette RA, Held BW, Jurgens JA, McNew DL, Harrington TC, Duncan SM, Farrell RL (2004) Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. Appl Environ Microbiol 3:1328–1335CrossRefGoogle Scholar
  5. Casieri L, Hofstetter V, Viret O, Gindro K (2009) Fungal communities living in the wood of different cultivars of young Vitis vinifera plants. Phytopathol Mediterr 48:73–83.  https://doi.org/10.14601/Phytopathol_Mediterr-2876 Google Scholar
  6. Chararas C, Pignal M-C (1981) Étude du rôle de deux levures isolées dans le tube digestif de Phoracantha semipunctata, Coléoptère Cerambycidae xylophage spécifique des Eucalyptus. Comptes Rendus de l’Académie des Sciences de Paris 292:109–112Google Scholar
  7. Crous PW, Groenewald JZ, Gams W (2003) Eyespot of cereals revisited: ITS phylogeny reveals new species relationships. Eur J Plant Pathol 109:841–850.  https://doi.org/10.1023/A:1026111030426 CrossRefGoogle Scholar
  8. Day MJ, Hall JC, Currah RS (2012) Phialide arrangement and character evolution in the helotialean anamorph genera Cadophora and Phialocephala. Mycologia 104:371–381.  https://doi.org/10.3852/11-059 CrossRefPubMedGoogle Scholar
  9. Drenkhan T, Sibul I, Kasanen R, Vainio EJ (2013) Viruses of Heterobasidion parviporum persist within their fungal host during passage through the alimentary tract of Hylobius abietis. For Pathol 43:317–323CrossRefGoogle Scholar
  10. Drenkhan T, Kasanen R, Vainio EJ (2016) Phlebiopsis gigantea and associated viruses survive passing through the digestive tract of Hylobius abietis. Biocontrol Sci Technol 26:320–330CrossRefGoogle Scholar
  11. EPPO (2016) Data sheets on quarantine pests—Anoplophora glabripennis. http://www.eppo.int/QUARANTINE/data_sheets/insects/ANOLGL_ds.pdf. Accessed 2 Dec 2016
  12. Francke-Grosmann H (1967) Ectosymbiosis in wood-inhabiting insects. Symbiosis 2:141–205CrossRefGoogle Scholar
  13. Gams W (2000) Phialophora and some similar morphologically little-differentiated anamorphs of divergent ascomycetes. Stud Mycol 45:187–199Google Scholar
  14. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhiza and rusts. Mol Ecol 2:113–118.  https://doi.org/10.1111/j.1365-294X.1993.tb00005.x CrossRefPubMedGoogle Scholar
  15. Geib SM, Scully ED, del Mar Jimene-Gasco M, Carlson JE, Tien M, Hoover K (2012) Phylogenetic analysis of Fusarium solani associated with the Asian longhorned beetle, Anoplophora glabripennis. Insects 3:141–160.  https://doi.org/10.3390/insects3010141 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gibson CM, Hunter MS (2009) Extraordinary widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett 13:223–234CrossRefPubMedGoogle Scholar
  17. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  18. Gramaje D, Mostert L, Armengol J (2011) Characterization of Cadophora luteo-olivacea and C. melinii isolates obtained from grapevines and environmental samples from grapevine nurseries in Spain. Phytopathol Mediterr 50:112–126.  https://doi.org/10.14601/Phytopathol_Mediterr-8723 Google Scholar
  19. Greenleaf MA, Korf RP (1980) Mollisia in Macaronesia: an exercise in frustration. Mycotaxon 10:459–472Google Scholar
  20. Grünwald S, Pilhofer M, Höll W (2010) Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleoptera: Cerambycidae]. Syst Appl Microbiol 33:25–34CrossRefPubMedGoogle Scholar
  21. Guindon S, Dufayard JF, Lefort V, Anisoma H, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:207–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefGoogle Scholar
  22. Haack RA, Cavey JF, Hoebeke ER, Law K (1996) Anoplophora glabripennis: a new tree-infesting exotic cerambycid invades New York. Newsl Mich Entomol Soc 41:1–3Google Scholar
  23. Haack RA, Hérard F, Sun J, Turgeon JJ (2010) Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annu Rev Entomol 55:521–546.  https://doi.org/10.1146/annurev-ento-112408-085427 CrossRefPubMedGoogle Scholar
  24. Hallaksela A-M (1999) Lahoisuus haavikossa. Metsäntutkimuslaitoksen tiedonantoja 725:49–55 Google Scholar
  25. Halleen F, Mostert L, Crous PW (2007) Pathogenicity testing of lesser-known vascular fungi of grapevines. Australas Plant Pathol 36:277–285.  https://doi.org/10.1071/AP07019 CrossRefGoogle Scholar
  26. Harrington TC, McNew DL (2003) Phylogenetic analysis places the Phialophora-like anamorph genus Cadophora in the Helotiales. Mycotaxon 87:141–151Google Scholar
  27. Heliövaara K, Mannerkoski I, Siitonen J (2004) Suomen sarvijäärät. Longhorn beetles in Finland (Coleoptera, Cerambycidae). Tremex Press, HelsinkiGoogle Scholar
  28. Hérard F, Ciampitti M, Maspero M, Krehan H, Benker U, Boegel C, Schrage R, Bouhot-Delduc L, Bialooki P (2006) Anoplophora species in Europe: infestations and management processes. EPPO Bull 36:470–474.  https://doi.org/10.1111/j.1365-2338.2006.01046.x CrossRefGoogle Scholar
  29. Hérard F, Maspero M, Ramualde N, Jucker C, Colombo M, Ciampitti M, Cavagna B (2009) Anoplophora glabripennis infestation (Col.: Cerambycidae) in Italy. EPPO Bull 39:146–152.  https://doi.org/10.1111/j.1365-2338.2009.02286.x CrossRefGoogle Scholar
  30. Herr JR, Scully ED, Geib SM, Hoover K, Carlson JE, Geiser DM (2016) Genome sequence of Fusarium isolate MYA-4552 from the midgut of Anoplophora glabripennis, an invasive, wood-boring beetle. Genome Announc 4:e00544–16.  https://doi.org/10.1128/genomeA.00544-16 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hu J, Angeli S, Schuetz S, Luo Y, Hajek AE (2009) Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis. Agric For Entomol 11:359–375.  https://doi.org/10.1111/j.1461-9563.2009.00443.x CrossRefGoogle Scholar
  32. Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect–fungus symbioses threatens naive forest ecosystems. Proc R Soc B 278:2866–2873.  https://doi.org/10.1098/rspb.2011.1130 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Humble LM, Allen EA (2006) Forest biosecurity: alien invasive species and vectored organisms. Can J Plant Pathol 28:S256–S269.  https://doi.org/10.1080/07060660609507383 CrossRefGoogle Scholar
  34. Jones KG, Dowd PF, Blackwell M (1999) Polyphyletic origins of yeast-like endocytobionts from anobiid and cerambycid beetles. Mycol Res 103:542–546.  https://doi.org/10.1017/S0953756298007308 CrossRefGoogle Scholar
  35. Jurzitza G (1959) Physiologische Untersuchungen an Cerambycidensymbionten. Arch Mikrobiol 33:305–332CrossRefPubMedGoogle Scholar
  36. Kasson MT, O’Donnell K, Rooney AP, Sink S, Ploetz JN et al (2013) An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genet Biol 56:147–157.  https://doi.org/10.1016/j.fgb.2013.04.004 CrossRefPubMedGoogle Scholar
  37. Katoh K, Standley D (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010.pmid:23329690 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kukor JJ, Martin MM (1986) Cellulose digestion in Monochamus marmorator Kby. (Coleoptera: Cerambycidae): role of acquired fungal enzymes. J Chem Ecol 12:1057–1070.  https://doi.org/10.1007/BF01638996 CrossRefPubMedGoogle Scholar
  39. Kukor JJ, Cowan DD, Martin MM (1988) The role of ingested fungal enzymes in cellulose digestion in the larvae of Cerambycid beetles. Physiol Biochem Zool 61:364–371Google Scholar
  40. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1877.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  41. Lagerberg T, Lundberg G, Melin E (1927) Biological and practical researches into blueing in pine and spruce. Sven Skogsvardsforen Tidskr 25:145–272Google Scholar
  42. Lefort V, Longueville J-E, Gascuel O (2017) SMS: smart model selection in PhyML. Mol Biol Evol 34:2422–2424.  https://doi.org/10.1093/molbev/msx149 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lingafelter SW, Hoebeke ER (2002) Revision of Anoplophora (Coleoptera: Cerambycidae). Entomological Society of Washington, WashingtonGoogle Scholar
  44. Linnakoski R, Jankowiak R, Villari C, Kirisits T, Solheim H, de Beer ZW, Wingfield MJ (2016) The Ophiostoma clavatum species complex: a newly defined group in the Ophiostomatales including three novel taxa. Antonie Van Lee J Microb 109:987–1018.  https://doi.org/10.1007/s10482-016-0700-y CrossRefGoogle Scholar
  45. Lu M, Wingfield MJ, Gillette NE, Sun J-H (2011) Do novel genotypes drive the success of an invasive bark beetle–fungus complex? Implications for potential reinvasion. Ecology 92:2013–2019.  https://doi.org/10.1890/11-0687.1 CrossRefPubMedGoogle Scholar
  46. Morales-Ramos JA, Rojas MG, Sittertz-Bhatkar H, Saldana G (2000) Symbiotic relationship between Hypothenemus hampei (Coleoptera: Scolytidae) and Fusarium solani (Moniliales: Tuberculariaceae). Ann Entomol Soc Am 93:541–547.  https://doi.org/10.1603/0013-8746(2000)093[0541:SRBHHC]2.0.CO;2 CrossRefGoogle Scholar
  47. Nardon P, Grenier AM (1989) Endocytobiosis in Coleoptera: biological, biochemical, and genetic aspects. In: Schwemmler W, Gassner G (eds) Insect endocytobiosis. CRC Press, Boca Raton, pp 175–215Google Scholar
  48. Navarrete F, Abreo E, Martınez S, Bettucci L, Sandra L (2011) Pathogenicity and molecular detection of Uruguayan isolates of Greeneria uvicola and Cadophora luteo-olivacea associated with grapevine trunk diseases. Phytopathol Mediterr 50:166–175.  https://doi.org/10.14601/Phytopathol_Mediterr-9188 Google Scholar
  49. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  50. O’Donnel K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116.  https://doi.org/10.1006/mpev.1996.0376 CrossRefGoogle Scholar
  51. Pärtel K (2016) Application of untrastructural and molecular data in the helotialen fungi. Dissertationes Biologicae Universitatis Tartuensis 304Google Scholar
  52. Ploetz RC, Hulcr J, Wingfield MJ, de Beer ZW (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 97:856–872.  https://doi.org/10.1094/PDIS-01-13-0056-FE CrossRefGoogle Scholar
  53. Ran B, Huang S, Henriksson G (2016) Isolation of exceedingly low oxygen consuming fungal strains able to utilize lignin as carbon source. Cellul Chem Technol 50:811–817Google Scholar
  54. Riba G (1977) Étude ultrastructurale de la multiplication et de la dégénérescence des symbionts des larves de Criocephalus rusticus [Coleoptera: Cerambycidae]; influence du jeune. Annales de la Société Entomologique de France (Nouvelle Série) 13:153–157Google Scholar
  55. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  56. Sánchez Márquez S, Bills GF, Zabalgogeazcoa I (2007) The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers 27:171–195Google Scholar
  57. Santamaría O, Diez JJ (2005) Fungi in leaves, twigs and stem bark of Populus tremula from northern Spain. For Pathol 35:95–104CrossRefGoogle Scholar
  58. Santini A, Faccoli M (2014) Dutch elm disease and elm bark beetles: a century of association. iForest 8:126–134.  https://doi.org/10.3832/ifor1231-008 CrossRefGoogle Scholar
  59. Schloss PD, Delalibera I Jr, Handelsman J, Raffa KF (2006) Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Coleoptera). Environ Entomol 35:625–629CrossRefGoogle Scholar
  60. Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS ONE 8:e73827.  https://doi.org/10.1371/journal.pone.0073827 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Scully ED, Geib SM, Carlson JE, Tien M, McKenna D, Hoover K (2014) Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genom 15:1096.  https://doi.org/10.1186/1471-2164-15-1096 CrossRefGoogle Scholar
  62. Stenlid J, Oliva J (2016) Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change. Philos Trans R Soc B 371:20150455.  https://doi.org/10.1098/rstb.2015.0455 CrossRefGoogle Scholar
  63. Sugiura N (1978) Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun Stat Theory Methods 7:13–26CrossRefGoogle Scholar
  64. Swofford DL (2002) PAUP* 4.0: phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, SunderlandGoogle Scholar
  65. Terhonen E, Marco T, Sun H, Jalkanen R, Kasanen R, Vuorinen M, Asiegbu F (2011) The effect of latitude, season and needle-age on the mycobiota of scots pine (Pinus sylvestris) in Finland. Silva Fenn 45:301–317.  https://doi.org/10.14214/sf.1320 CrossRefGoogle Scholar
  66. Tomiczek C, Krehan H, Menschhorn P (2002) Dangerous Asian Longhorn Beetle found in Austria: a new threat for our trees? AFZ/Der Wald Allgemeine Forst Zeitschrift für Waldwirtschaft und Umweltversorge 57:52–54 (in German) Google Scholar
  67. Travadon R, Lawrence DP, Rooney-Latham S, Gubler WD, Wilcox WF, Rolshausen PE, Baumgartner K (2015) Cadophora species associated with wood-decay of grapevine in North America. Fungal Biol 119:53–66.  https://doi.org/10.1016/j.funbio.2014.11.002 CrossRefPubMedGoogle Scholar
  68. Úrbez-Torres JR, Haag P, Bowen P, O’Gorman DT (2014) Grapevine trunk diseases in British Columbia: incidence and characterization of the fungal pathogens associated with Esca and Petri Diseases of grapevine. Plant Dis 98:469–482.  https://doi.org/10.1094/PDIS-05-13-0523-RE CrossRefGoogle Scholar
  69. Uvarov B (1929) Insect nutrition and metabolism. Trans R Entomol Soc Lond 76:255–343CrossRefGoogle Scholar
  70. Välimäki S, Heliövaara K (2007) Hybrid aspen is not preferred by the large poplar borer (Saperda carcharias). Arthropod Plant Interact 1:205–211CrossRefGoogle Scholar
  71. Vega FE, Blackwell M (2005) Insect-fungal associations: ecology and evolution. Oxford University Press, New YorkGoogle Scholar
  72. Watanabe H, Tokuda G (2010) Cellulosic systems in insects. Annu Rev Entomol 55:609–632.  https://doi.org/10.1146/annurev-ento-112408-085319 CrossRefPubMedGoogle Scholar
  73. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Millbrae, pp 315–321Google Scholar
  74. Wingfield MJ (1987) Fungi associated with the pine wood nematode, Bursaphelenchus xylophilus, and cerambycid beetles in Wisconsin. Mycologia 79:325–328CrossRefGoogle Scholar
  75. Wingfield MJ, Garnas JR, Hajek A, Hurley BP, de Beer ZW, Taerum SJ (2016) Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol Invasions 18:1045–1056.  https://doi.org/10.1007/s10530-016-1084-7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Natural Resources Institute Finland (Luke)HelsinkiFinland
  3. 3.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  4. 4.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  5. 5.Department of Plant Biology and BiotechnologyUniversity of BeninBenin CityNigeria

Personalised recommendations