Advertisement

Antonie van Leeuwenhoek

, Volume 111, Issue 10, pp 1855–1862 | Cite as

Gallaecimonas mangrovi sp. nov., a novel bacterium isolated from mangrove sediment

  • Wei-Yan Zhang
  • Ye Yuan
  • Deng-Quan Su
  • Xiao-Ping He
  • Shuai-Bo Han
  • Slava S. Epstein
  • Shan He
  • Min Wu
Original Paper

Abstract

A Gram-stain negative, rod-shaped, non-motile, strictly aerobic bacterium HK-28T was isolated from a mangrove sediment sample in Haikou city, Hainan Province, China. Strain HK-28T was able to grow at 10–45 °C (optimum 25–30 °C), pH 5.0–8.5 (optimum 6.0–7.0) and 0.5–12.0% (w/v) NaCl (optimum 1.0–3.0%, w/v). The major cellular fatty acids were C16:0, Summed Feature 8 (C18:1 ω7c and/or C18:1 ω6c), Summed Feature 3 (C16:1 ω7c and/or C16:1 ω6c), C17:0, C12:0 3-OH and C17:1ω8c. Ubiquinone-8 (Q-8) was the predominant respiratory quinone. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, four unidentified phospholipids, two unidentified glycolipid, an unidentified glycophospholipid, an unidentified aminolipid and an unidentified lipid. The DNA G+C content was 50.2 mol%. Accoroding to 16S rRNA gene sequence similarities, strain HK-28T shared 97.1 and 96.7% sequence similarities to the validly named species Gallaecimonas xiamenensis MCCC 1A01354T and Gallaecimonas pentaromativorans MCCC 1A06435T, respectively, and shared lower sequence similarities (< 92.0%) to all other genera. Phylogenetic analysis showed strain HK-28T was clustered with G. pentaromativorans MCCC 1A06435T and G. xiamenensis MCCC 1A01354T. Strain HK-28T showed low DNA–DNA relatedness with G. xiamenensis MCCC 1A01354T (28.3 ± 1.5%) and G. pentaromativorans MCCC 1A06435T (25.2 ± 2.4%). On the basis of phenotypic, chemotaxonomic and genotypic characteristics, strain HK-28T is considered to represent a novel species in the genus Gallaecimonas, for which the name Gallaecimonas mangrovi sp. nov. is proposed. The type strain is HK-28T (= KCTC 62177T = MCCC 1K03441).

Keywords

Gallaecimonas mangrovi Mangrove sediment Taxonomy 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province of China (LQ18C010001), National Natural Science Foundation of China (41776168), Ningbo Sci & Tech Project for Common Wealth (2017C10016), National 111 Project of China, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Development Fund and K.C.Wong Magna Fund in Ningbo University. S.S.E. was sponsored by the Chinese National Recruitment Program of Global Experts (1000 Talents Program).

Conflict of interest

The authors declare there are no conflicts of interest.

Supplementary material

10482_2018_1076_MOESM1_ESM.doc (2.8 mb)
Supplementary material 1 (DOC 2860 kb)

References

  1. Bernardet JF, Nakagawa Y, Holmes B, Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070Google Scholar
  2. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefGoogle Scholar
  3. Dong XZ, Cai MY (2001) Determination of biochemical properties. In: Dong XZ, Cai MY (eds) Manual for the systematic identification of General Bacteria. Science Press, Beijing, pp 370–398 (in Chinese) Google Scholar
  4. Epstein SS (2013) The phenomenon of microbial uncultivability. Curr Opin Microbiol 16(5):636–642CrossRefGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  6. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  7. Huß VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192CrossRefGoogle Scholar
  8. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129CrossRefGoogle Scholar
  9. Kates M (1986) Techniques of lipidology. isolation, analysis and identification of lipids, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  10. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  11. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 19:161–207CrossRefGoogle Scholar
  12. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  13. Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479:297–306CrossRefGoogle Scholar
  14. Minnikin DE, Odonnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  15. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A et al (2010) Use of ichip for high-throughput in situ cultivation of ‘‘uncultivable’’ microbial species. Appl Environ Microbiol 76:2445–2450CrossRefGoogle Scholar
  16. Rodríguez-Blanco A, Vetion G, Escande ML, Delille D, Ghiglione JF (2010) Gallaecimonas pentaromativorans gen. nov., sp. nov., a bacterium carrying 16S rRNA gene heterogeneity and able to degrade high-molecular-mass polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 60:504–509CrossRefGoogle Scholar
  17. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  18. Shen P, Chen XD (2008) Experiment of Microbiology. Higher Education Press, Beijing (English translation) Google Scholar
  19. Sun C, Wang RJ, Su Y, Fu G, Zhao Z et al (2017) Hyphobacterium vulgare gen. nov., sp. nov., a novel alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 67(5):1169–1176CrossRefGoogle Scholar
  20. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202CrossRefGoogle Scholar
  21. Wang JN, Lai QL, Duan X, Fu YY, Wang LP et al (2013) Gallaecimonas xiamenensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63:930–933CrossRefGoogle Scholar
  22. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar
  24. Zhong ZP, Liu Y, Wang F, Zhou YG, Liu HC et al (2016) Planktosalinus lacus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a salt lake. Int J Syst Evol Microbiol 66:2084–2089CrossRefGoogle Scholar
  25. Zhu XF (2011) Modern experimental technique of microbiology. Zhejiang University Press, Hangzhou (English translation) Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research CenterNingbo UniversityNingboPeople’s Republic of China
  2. 2.Department of BiologyNortheastern UniversityBostonUSA
  3. 3.College of Life SciencesZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations