Antonie van Leeuwenhoek

, Volume 111, Issue 8, pp 1301–1313 | Cite as

Ultraviolet radiation in the Atacama Desert

  • R. R. CorderoEmail author
  • A. Damiani
  • J. Jorquera
  • E. Sepúlveda
  • M. Caballero
  • S. Fernandez
  • S. Feron
  • P. J. Llanillo
  • J. Carrasco
  • D. Laroze
  • F. Labbe
Original Paper


The world’s highest levels of surface ultraviolet (UV) irradiance have been measured in the Atacama Desert. This area is characterized by its high altitude, prevalent cloudless conditions, and a relatively low total ozone column. In this paper, we provide estimates of the surface UV (monthly UV index at noon and annual doses of UV-B and UV-A) for all sky conditions in the Atacama Desert. We found that the UV index at noon during the austral summer is expected to be greater than 11 in the whole desert. The annual UV-B (UV-A) doses were found to range from about 3.5 kWh/m2 (130 kWh/m2) in coastal areas to 5 kWh/m2 (160 kWh/m2) on the Andean plateau. Our results confirm significant interhemispherical differences. Typical annual UV-B doses in the Atacama Desert are about 40% greater than typical annual UV-B doses in northern Africa. Mostly due to seasonal changes in the ozone, the differences between the Atacama Desert and northern Africa are expected to be about 60% in the case of peak UV-B levels (i.e. the UV-B irradiances at noon close to the summer solstice in each hemisphere). Interhemispherical differences in the UV-A are significantly lower since the effect of the ozone in this part of the spectrum is minor.


UV Spectroradiometry UV radiance Atacama 



The support of the Consejo Nacional de Ciencia y Tecnología (CONICYT, Preis ACT1410, 1171690, 1161460 and 1151034) and the Corporación de Fomento de la Producción (CORFO, Preis 17BPE-73748 and 16BPE2-66227), Centro de Nanotecnología (CEDENNA), and the Universidad de Santiago de Chile (USACH, Preis USA1555), is gratefully acknowledged.

Authors’ contributions

Conceived and designed the experiments: RRC, AD and JC Performed the experiments: JJ., and ES. Analyzed the data: RRC, AD, SF, MC, SF, FL, DL and PL Wrote the paper: RRC, AD, JC and SF.


Although the support of the several agencies is gratefully acknowledged (see details below), the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare neither competing interests nor conflict of interests.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

Not applicable since this research did not involved humans, animals, plants or any form of life.


  1. Aoki T, Mikami M, Yamazaki A, Yabuki S, Yamada Y, Ishizuka M, Zhou MX (2005) Spectral albedo of desert surfaces measured in western and central China. J Meteorol Soc Jpn 83(3):279–290CrossRefGoogle Scholar
  2. Badosa J, McKenzie RL, Kotkamp M, Calbó J, González JA, Johnston PV, O’Neill M, Anderson DJ (2007) Towards closure between measured and modelled UV under clear skies at four diverse sites. Atmos Chem Phys 7(11):2817–2837CrossRefGoogle Scholar
  3. Bellouin N, Quaas J, Morcrette JJ, Boucher O (2013) Estimates of aerosol radiative forcing from the MACC re-analysis. Atmos Chem Phys 13(4):2045–2062CrossRefGoogle Scholar
  4. Bodhaine BA, Dutton EG, Hofmann DJ, McKenzie RL, Johnston PV (1997) UV measurements at Mauna Loa: July 1995 to July 1996. J Geophys Res 102(19265):19273Google Scholar
  5. Campanelli M, Estellés V, Tomasi C, Nakajima T, Malvestuto V, Martínez-Lozano JA (2007) Application of the SKYRAD Improved Langley plot method for the in situ calibration of CIMEL Sun-sky photometers. App Opt 46(14):2688–2702CrossRefGoogle Scholar
  6. Chin M, Diehl T, Tan Q, Prospero JM, Kahn RA, Remer LA, Holben BN (2014) Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos Chem Phys 14:3657–3690CrossRefGoogle Scholar
  7. Cordero RR, Seckmeyer G, Pissulla D, Labbe F (2008) Uncertainty of experimental integrals: application to the UV index calculation”. Metrologia 45:1–10CrossRefGoogle Scholar
  8. Cordero RR, Damiani A, Seckmeyer G, Riechelmann S, Labbe F, Laroze D, Garate F (2013) Satellite-derived UV Climatology at Escudero Station (Antarctic Peninsula). Antarct Sci 25(6):791–803CrossRefGoogle Scholar
  9. Cordero RR, Damiani A, Ferrer J, Jorquera J, Tobar M (2014a) UV Irradiance and Albedo at Union Glacier Camp (Antarctica): a Case Study. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cordero RR, Seckmeyer G, Riechelmann S, Damiani A, Labbe F, Laroze D (2014b) The world’s highest levels of surface UV. Photochem Photobiol Sci 13:70–81CrossRefPubMedGoogle Scholar
  11. Cordero RR, Damiani A, Seckmeyer G, Jorquera J, Caballero M, Rowe P, Matus M (2016) The solar spectrum in the Atacama Desert. Sci Rep 6:22457CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dahlback A, Stamnes K (1991) A new spherical model for computing the radiation held available for photolysis and heating at twilight. Planet Space Sci 39:671–683CrossRefGoogle Scholar
  13. Dahlback A, Gelsor N, Stamnes JJ, Gjessing Y (2007) UV measurements in the 3000–5000 m altitude region in Tibet. J Geophys Res 112:D09308. CrossRefGoogle Scholar
  14. Damiani A, Cordero RR, Cabrera S, Laurenza M, Rafanelli C (2014) Cloud cover and UV index estimates in Chile from satellite- derived and ground-based data. Atmos Res 138:139–151CrossRefGoogle Scholar
  15. Diner DJ, Abdou WA, Bruegge CJ, Conel JE, Crean KA, Gaitley BJ, Helmlinger MC, Kahn RA, Martonchik JV, Pilorz SH, Holben BN (2001) MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 dry season campaign. Geophys Res Lett 28:3127–3130CrossRefGoogle Scholar
  16. Fournier N, Stammes P, Graaf MD, Piters A, Grzegorski M, Kokhanovsky A (2006) Improving cloud information over deserts from SCIAMACHY Oxygen A-band measurements. Atmos Chem Phys 6(1):163–172CrossRefGoogle Scholar
  17. Gueymard CA (2004) The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol Energy 76:423–453CrossRefGoogle Scholar
  18. Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16CrossRefGoogle Scholar
  19. Hsu NC, Gautam R, Sayer AM, Bettenhausen C, Li C, Jeong MJ, Tsay SC, Holben BN (2012) Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos Chem Phys 12:8037–8053. CrossRefGoogle Scholar
  20. Hu L, Montzka SA, Lehman SJ, Godwin DS, Miller BR, Andrews AE, Elkins JW (2017) Considerable contribution of the Montreal Protocol to declining greenhouse gas emissions from the United States. Geophys Res Lett 44(15):8075–8083CrossRefGoogle Scholar
  21. Kato S, Rose FG, Sun-Mack S, Miller WF, Chen Y, Rutan DA, Winker DM (2011) Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J Geophys Res Atmos. CrossRefGoogle Scholar
  22. Kleipool QL, Dobber MR, de Haan JF, Levelt PF (2008) Earth surface reflectance climatology from 3 years of OMI data. J Geophys Res 113:D18308. CrossRefGoogle Scholar
  23. LARC NASA (2017) Surface meteorology and Solar Energy (SSE-release 6.0): A renewable energy resource web site sponsored by NASA’s Applied Sciences. Accessed 20 July 2017
  24. Mayer B, Kylling A (2005) Technical note: the libRadtran software package for radiative transfer calculations - description and examples of use. Atmos Chem Phys 5:1855–1877CrossRefGoogle Scholar
  25. McKenzie RL, Bodeker GE, Scott G, Slusser J (2006) Geographical differences in erythemally-weighted UV measured at mid- latitude USDA sites. Photochem Photobiol Sci 5:343–352CrossRefPubMedGoogle Scholar
  26. McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M, Madronich S (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10(2):182–198CrossRefPubMedGoogle Scholar
  27. McKenzie RL, Bernhard G, Madronich S, Zaratti F (2015) Comment on “Record solar UV irradiance in the tropical Andes, by Cabrol et al”. Front Environ Sci 3:26CrossRefGoogle Scholar
  28. McKinlay AF, Diffey BL (1987) A reference action spectrum for ultraviolet induced erythema in human skin. CIE J 6:17–22Google Scholar
  29. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone. Nature 810:812–849. CrossRefGoogle Scholar
  30. Patat F, Moehler S, O’Brien K, Pompei E, Bensby T, Carraro G, Korhonen H (2011) Optical atmospheric extinction over Cerro Paranal. Astron Astrophys 527:A91CrossRefGoogle Scholar
  31. Piacentini RD, Salum GM, Fraidenraich Tiba C (2011) Extreme total solar irradiance due to cloud enhancement at sea level of the NE Atlantic coast of Brazil. Renew Energ 36(1):409–412CrossRefGoogle Scholar
  32. Sayer AM, Munchak LA, Hsu NC, Levy RC, Bettenhausen C, Jeong M-J (2014) MODIS Collection 6 aerosol products: comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J Geophys Res-Atmos 119(24):13965–13989CrossRefGoogle Scholar
  33. Schrempf M, Haluza D, Simic S, Riechelmann S, Graw K, Seckmeyer G (2016) Is multidirectional UV exposure responsible for increasing melanoma prevalence with altitude? A hypothesis based on calculations with a 3D-human exposure model. Int J Env Res Pub H13(10):961CrossRefGoogle Scholar
  34. Schwander H, Koepke P, Kaifel A, Seckmeyer G (2002) Modification of spectral UV irradiance by clouds. J Geophys Res Atmos. CrossRefGoogle Scholar
  35. Seckmeyer G, Bais A, Bernhard G, Blumthaler M, Booth CR (2001) Part 1: Spectral instruments. Instruments to Measure Solar Ultraviolet Radiation. WMO-GAW 125 World Meteorological Organization- Global Atmosphere Watch. Secretariat of the World Meteorological OrganizationGoogle Scholar
  36. Slaper H, Velders GJM, Daniel JS, de Gruijl FR, van der Leun JC (1996) Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements. Nature 384:256–258CrossRefPubMedGoogle Scholar
  37. Solomon S, Ivy DJ, Kinnison D, Mills MJ, Neely RR, Schmidt A (2016) Emergence of healing in the Antarctic ozone layer. Science. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Strahan SE, Douglass AR (2017) decline in antarctic ozone depletion and lower stratospheric chlorine determined from aura microwave limb sounder observations. Geophys Res Lett. CrossRefGoogle Scholar
  39. Tevini M (1993) UV-B radiation and ozone depletion: effect on humans, animals, plants, microorganisms and materials. Lewis, New YorkGoogle Scholar
  40. Toledano C, Wiegner M, Garhammer M, Seefeldner M, Gasteiger J, Müller D, Koepke P (2009) Spectral aerosol optical depth characterization of desert dust during SAMUM 2006. Tellus B 61(1):216–228CrossRefGoogle Scholar
  41. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Ise T (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3 m experiments. Geosci Model Dev 4(4):845CrossRefGoogle Scholar
  42. WMO/UNEP Scientific Assessment of Ozone Depletion (2014) Global ozone research and monitoring project. Switzerland, GenevaGoogle Scholar
  43. Wuttke S, Seckmeyer G, Bernhard G, Ehramjian J, McKenzie R (2006) New spectroradiometers complying with the NDSC standards. J Atmos Ocean Technol 23:241–256CrossRefGoogle Scholar
  44. Xin J, Wang Y, Li Z, Wang P, Hao WM, Nordgren BL, Sun Y (2007) Aerosol optical depth (AOD) and Ångström exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. J Geophys Res Atmos. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • R. R. Cordero
    • 1
    Email author
  • A. Damiani
    • 1
    • 2
  • J. Jorquera
    • 1
  • E. Sepúlveda
    • 1
  • M. Caballero
    • 1
  • S. Fernandez
    • 1
  • S. Feron
    • 1
  • P. J. Llanillo
    • 1
  • J. Carrasco
    • 3
  • D. Laroze
    • 4
  • F. Labbe
    • 5
  1. 1.Universidad de Santiago de ChileSantiagoChile
  2. 2.Center for Environmental Remote SensingChiba UniversityChibaJapan
  3. 3.Universidad de MagallanesPunta ArenasChile
  4. 4.Instituto de Alta InvestigaciónUniversidad de TarapacáAricaChile
  5. 5.Universidad Técnica Federico Santa MaríaValparaisoChile

Personalised recommendations