Hoeflea prorocentri sp. nov., isolated from a culture of the marine dinoflagellate Prorocentrum mexicanum PM01


A Gram-stain negative, aerobic, rod-shaped, non-motile, yellow-pigmented and non-spore-forming bacterial strain, designated PM5-8T, was isolated from a culture of a marine toxigenic dinoflagellate Prorocentrum mexicanum PM01. Strain PM5-8T grew at 15–35 °C (optimum, 25–30 °C) and pH 6–11 (optimum, 7.5–8). Cells required at least 1.5% (w/v) NaCl for growth, and can tolerate up to 7.0% with the optimum of 4%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strain PM5-8T is closely related to members of the genus Hoeflea, with high sequence similarities with Hoeflea halophila JG120-1T (97.06%) and Hoeflea alexandrii AM1V30T (97.01%). DNA–DNA hybridization values between the isolate and other type strains of recognized species of the genus Hoeflea were between 11.8 and 25.2%, which is far below the value of 70% threshold for species delineation. The DNA G + C content was 50.3 mol%. The predominant cellular fatty acids of the strain were identified as summed feature 8 (C16:1 ω7c and/or C16:1 ω6c; 51.5%), C18:1 ω7c 11-methyl (20.7%), C16:0 (17.2%) and C18:0 (5.7%). The major respiratory quinone was Q-10. Polar lipids profiles contained phosphatidylcholine, phosphatidylglycerol, sulfoquinovosyl diacylglycerol, phosphatidylmono- methylethanolamine, phosphatidylethanolamine and four unidentified lipids. On the basis of the polyphasic taxonomic data presented, strain PM5-8T (= CCTCC AB 2016294T = KCTC 62490T) represents a novel species of the genus Hoeflea, for which the name Hoeflea prorocentri sp. nov. is proposed.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Akbar A, Chen C, Zhu L, Xin K, Cheng J, Yang Q, Zhao L, Zhang L, Shen X (2015) Sphingomonas hylomeconis sp. nov., isolated from the stem of Hylomecon japonica. Int J Syst Evol Microbiol 65:4025–4031

    CAS  Article  Google Scholar 

  2. Biebl H, Tindall BJ, Pukall R, Lünsdorf H, Allgaier M, Wagner-Dobler I (2006) Hoeflea phototrophica sp. nov., a novel marine aerobic alphaproteobacterium that forms bacteriochlorophyll a. Int J Syst Evol Microbiol 56:821–826

    CAS  Article  Google Scholar 

  3. Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868

    CAS  Article  Google Scholar 

  4. Chung EJ, Park JA, Pramanik P, BibiF Jeon CO, Chung YR (2013) Hoeflea suaedae sp. nov., an endophytic bacterium isolated from the root of the halophyte Suaeda maritima. Int J Syst Evol Microbiol 63:2277–2281

    CAS  Article  Google Scholar 

  5. Cortés-Altamirano R, Sierra-Beltrán AP (2003) Morphology and taxonomy of Prorocentrum mexicanum and reinstatement of Prorocentrum rhathymum (Dinophyceae). J Phycol 39:221–225

    Article  Google Scholar 

  6. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 21–33

    Google Scholar 

  7. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  Article  Google Scholar 

  9. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416

    Article  Google Scholar 

  10. Jung MY, Shin KS, Kim S, Kim SJ, Park SJ, Kim JG, Cha IT, Kim MN, Rhee SK (2013) Hoeflea halophila sp. nov., a novel bacterium isolated from marine sediment of the East Sea, Korea. Antonie van Leeuwenhoek 103:971–978

    Article  Google Scholar 

  11. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  Article  Google Scholar 

  12. Lim JM, Jeon CO, Jang HH, Park DJ, ShinYK Yeo SH, Kim CJ (2008) Albimonas donghaensis gen. nov., sp. nov., a nonphotosynthetic member of the class Alphaproteobacteria isolated from seawater. Int J Syst Evol Microbiol 58:282–285

    CAS  Article  Google Scholar 

  13. Lu CK, Chou HN (2002) Research of marine dinoflagellate bioactive compounds in Taiwan (Proceedings of International Commemorative Symposium 70th Anniversary of The Japanese Society of Fisheries Science). Fish Sci 68(Suppl 2):1593–1596

    Article  Google Scholar 

  14. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    CAS  Article  Google Scholar 

  15. Palacios L, Arahal DR, Reguera B, Marin I (2006) Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V. Int J Syst Evol Microbiol 56:1991–1995

    CAS  Article  Google Scholar 

  16. Peix A, Rivas R, Trujillo ME, Vancanneyt M, Velazquez E, Willems A (2005) Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Int J Syst Evol Microbiol 55:1163–1166

    CAS  Article  Google Scholar 

  17. Rahul K, Azmatunnisa M, Sasikala C, Ramana CV (2015) Hoeflea olei sp. nov., a diesel-oil-degrading, anoxygenic, phototrophic bacterium isolated from backwaters and emended description of the genus Hoeflea. Int J Syst Evol Microbiol 65:2403–2409

    CAS  Article  Google Scholar 

  18. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  19. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  20. Smibert RM, Krieg NR (1994) Phenotypic characterization: In: Methods for general and molecular bacteriology P. American Society for Microbiology, Washington DC

  21. Stevenson BS, Suflita MT, Stamps BW, Moore ERB, Johnson CN, Lawson PA (2011) Hoeflea anabaenae sp. nov., an epiphytic symbiont that attaches to the heterocysts of a strain of Anabaena. Int J Syst Evol Microbiol 61:2439–2444

    CAS  Article  Google Scholar 

  22. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    CAS  Article  Google Scholar 

  23. Trüper HG, Pfennig N (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The Prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer, Berlin, pp 279–289

    Google Scholar 

  24. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

  25. Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  26. Xie CH, Yokota A (2003) Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349

    CAS  Article  Google Scholar 

  27. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  Google Scholar 

  28. Zhang XL, Ma LY, Huang HL, Yang Q (2015) Biodiversity study of intracellular bacteria closely associated with paralytic shellfish poisoning dinoflagellates Alexandrium tamarense and A. minutum. Int J Env Resour 4:23–27

    Article  Google Scholar 

Download references


This work was supported by Talent Introduction Foundation of Zhejiang Ocean University (for Qiao Y.), the National Natural Science Foundation of China (41206093 and 31470540), the Zhejiang Provincial Natural Science Foundation of China (LY18D060007), Scientific Instrument and Chemical Reagents Project of Shanghai Science and Technology Committee (15142201600), and Municipal Public Welfare Project of Zhoushan (2017C32083). The authors also sincerely thank Prof. Hong-Nong Chou at Institute of Fisheries Science, National Taiwan University, for kindly providing Prorocentrum mexicanum PM01.

Author information



Corresponding authors

Correspondence to Xiao-Ling Zhang or Jun Mu.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequence of strain PM5-8T is KY264918.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 496 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Jiang, ZW., Huang, CH. et al. Hoeflea prorocentri sp. nov., isolated from a culture of the marine dinoflagellate Prorocentrum mexicanum PM01. Antonie van Leeuwenhoek 111, 1845–1853 (2018). https://doi.org/10.1007/s10482-018-1074-0

Download citation


  • Hoeflea prorocentri sp. nov.
  • Novel species
  • Prorocentrum mexicanum
  • Algal-associated bacterium