Advertisement

Antonie van Leeuwenhoek

, Volume 111, Issue 10, pp 1825–1833 | Cite as

A novel pigmented and heavy metal biosorptive bacterium, Leucobacter epilobiisoli sp. nov., isolated from rhizosphere soil of Epilobium hirsutum L.

  • Shao-Yang Hou
  • Fang Wang
  • Meng-Yue Zhang
  • Juan Cheng
  • Yi-Xuan Zhang
Original Paper

Abstract

A novel yellow pigmented, Gram-positive, aerobic and heavy metal biosorptive bacterium designated SYP-B2667T was isolated from rhizosphere soil of Epilobium hirsutum L. in Tongren, Guizhou province, China. Based on 16S rRNA gene sequence analyses, it was shown that strain SYP-B2667T represents a novel species in the genus Leucobacter, with Leucobacter chromiireducens subsp. solipictus JCM 15573T as a close phylogenetic neighbour (sequence similarity of 98.2%). Chemotaxonomic characteristics also supported the affiliation to the genus Leucobacter. Strain SYP-B2667T was determined to have a DNA G+C content of 66.6 mol%; 2,4-diaminobutyric acid in the cell wall peptidoglycan amino acids; MK-11 as predominant menaquinone; an abundance of anteiso-C15:0 and anteiso-C17:0 fatty acids; and polar lipids including diphosphatidylglycerol, phosphatidylglycerol, glycolipids and unidentified phospholipids. The DNA–DNA hybridization value between strain SYP-B2667T and L. chromiireducens subsp. solipictus JCM 15573T was 19.7 ± 2.8%. Based on these phylogenetic and phenotypic results, it can be concluded that strain SYP-B2667T represents a novel species, for which the name Leucobacter epilobiisoli sp. nov. is proposed. The type strain is SYP-B2667T (=DSM 105145T=CPCC 204976T). This strain can tolerate and adsorb five heavy metals and so may have potential to facilitate heavy metal removal and bioremediation.

Keywords

Epilobium hirsutum L. Heavy metals biosorption Leucobacter sp. nov. Rhizosphere soil 

Notes

Acknowledgements

This research was supported by the Major Science and Technique Programs in Yunnan Province (2016ZF001-001, 2017IB038), Project of Yunnan provincial academy of science and technology (2015IC017) and National Science and Technology Major Project (2018ZX09735001-002-002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no direct or indirect conflict of interest.

Ethical approval

This is the original work of the authors. The work described has not been submitted elsewhere for publication, in whole or in part, and all authors listed carried out the data analysis and manuscript writing. Moreover, all authors read and approved the final manuscript.

Supplementary material

10482_2018_1071_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1132 kb)

References

  1. Behrendt U, Ulrich A, Schumann P (2008) Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 58:2574–2578CrossRefGoogle Scholar
  2. Chun BH, Lee HJ, Jeong SE, Schumann P, Jeon CO (2017) Leucobacter ruminantium sp. nov., isolated from the bovine rumen. Int J Syst Evol Microbiol 67:2634–2639CrossRefGoogle Scholar
  3. Clark LC, Hodgkin J (2015) Leucobacter musarum subsp. musarum sp. nov., subsp. nov., Leucobacter musarum subsp. japonicus subsp. nov., and Leucobacter celer subsp. astrifaciens subsp. nov., three nematopathogenic bacteria isolated from Caenorhabditis, with an emended description of Leucobacter celer. Int J Syst Evol Microbiol 65:3977–3984CrossRefGoogle Scholar
  4. Claus D (1992) A standardized gram staining procedure. World J Microbiol Biotechnol 8:451–452CrossRefGoogle Scholar
  5. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Microbiol 63:45–470Google Scholar
  6. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230CrossRefGoogle Scholar
  7. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363CrossRefGoogle Scholar
  8. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic rlatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229Google Scholar
  9. Fang W, Li Y, Xie SJ, Yang X, Wang LF (2016) Leucobacter populi sp. nov., isolated from symptomatic bark of Populus × euramericana canker. Int J Syst Evol Microbiol 66:2254–2258CrossRefGoogle Scholar
  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstarp. Evolution 39:783–791CrossRefGoogle Scholar
  12. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  13. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715CrossRefGoogle Scholar
  14. Halpern M, Shaked T, Pukall R, Schumann P (2009) Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 59:665–670CrossRefGoogle Scholar
  15. Harumi U (2011) Leucobacter exalbidus sp. nov., an actinobacterium isolated from a mixed culture from compost. J Gen Appl Microbiol 57:27–33CrossRefGoogle Scholar
  16. Joutey NT, Bahafid W, Sayel H, Nassef S, Ghachtouli NE (2016) Leucobacter chromiireducens CRB2, a new strain with high Cr(VI) reduction potential isolated from tannery-contaminated soil (Fez, Morocco). Ann Microbiol 66:425–436CrossRefGoogle Scholar
  17. Kim H, Lee S (2011) Leucobacter kyeonggiensis sp. nov., a new species isolated from dye waste water. J Microbiol 49:1044–1049CrossRefGoogle Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  19. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 4535:703–704CrossRefGoogle Scholar
  20. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr R 12:2359–2367CrossRefGoogle Scholar
  21. Lai WA, Lin SY, Hameed A, Hsu YH, Liu YC, Huang HR, Shen FT, Young CC (2015) Leucobacter zeae sp. nov., isolated from the rhizosphere of maize (Zea mays L.). Int J Syst Evol Microbiol 65:4734–4742CrossRefGoogle Scholar
  22. Lee JH, Lee SS (2012) Leucobacter margaritiformis sp. nov., isolated from bamboo extract. Curr Microbiol 64:441–448CrossRefGoogle Scholar
  23. Lee EP, Han YS, Lee SI, Cho KT, Park JH, You Y (2017) Effect of nutrient and moisture on the growth and reproduction of Epilobium hirsutum L., an endangered plant. J Environ Prot Ecol.  https://doi.org/10.1186/s41610-017-0054-z CrossRefGoogle Scholar
  24. Li W, Xu P, Schumann P, Zhang Y, Pukall R, Xu L, Stackebrandt E, Jiang C (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428CrossRefGoogle Scholar
  25. Li Y, Fang W, Xie SJ, Yang X, Wang LF (2016) Leucobacter corticis sp. nov., isolated from symptomatic bark of Populus × euramericana canker. Int J Syst Evol Microbiol 65:432–437CrossRefGoogle Scholar
  26. Li DD, Xu XJ, Yu HW, Han XR (2017) Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. J Environ Manage 196:8–15CrossRefGoogle Scholar
  27. Lin YC, Uemori K, Briel DA, Arunpairojana V, Yokota A (2004) Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 54:1669–1676CrossRefGoogle Scholar
  28. Lucia P, Valentin N, Cristina H, Denisa IU, Nicorescu I (2015) Antimicrobial and synergistic activity of some whole and selestive Epilobium hirsutum L. (Great Willowherb) extracts tested on standard and wild staphylococcus aureus strains. Farmacia 63:690–695Google Scholar
  29. Martin E, Lodders N, Jackel U, Schumann P, Kampfer P (2010) Leucobacter aerolatus sp. nov., from the air of a duck barn. Int J Syst Evol Microbiol 60:2838–2842CrossRefGoogle Scholar
  30. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  31. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and IPolar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 47:87–95Google Scholar
  32. Morais PV, Francisco R, Branco R, Chung AP, Da CM (2004) Leucobacter chromiireducens sp. nov, and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 27:646–652CrossRefGoogle Scholar
  33. Morais PV, Francisco R, Branco R, Chung AP, Da CM (2005) Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 55:547–549CrossRefGoogle Scholar
  34. Morais PV, Paulo C, Francisco R, Branco R, Chung AP, Costa MS (2006) Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 29:414–421CrossRefGoogle Scholar
  35. Muir RE, Tan MW (2007) Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens. Int J Syst Evol Microbiol 57:2770–2776CrossRefGoogle Scholar
  36. Ou XH, Wang L, Guo LP, Cui XM, Liu DH, Yang Y (2016) Soil-plant metal relations in Panax notoginseng: an ecosystem health risk assessment. Int J Environ Res Public Health 13:1089–1093CrossRefGoogle Scholar
  37. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a Digital Protologue: a timely move towards a database-driven systematics of Archaea and Bacteria. Syst Appl Microbiol 40:121–122CrossRefGoogle Scholar
  38. Rui YK, Shen JB, Zhang FS (2008) Application of ICP-MS to determination of heavy metal content of heavy metals in two kinds of N fertilizer. Spectrosc Spectr Anal 10:2425–2427Google Scholar
  39. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  40. Sarangi A, Krishnan C (2008) Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Biores Technol 99:4130–4137CrossRefGoogle Scholar
  41. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc., NewarkGoogle Scholar
  42. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedPubMedCentralGoogle Scholar
  43. Schumann P, Pukall R (2017) Leucobacter weissii sp. nov., an isolate from activated sludge once described as first representative of the peptidoglycan variation B2δ, and emended description of the genus Leucobacter. Int J Syst Evol Microbiol 67:5244–5251CrossRefGoogle Scholar
  44. Shin NR, Kim MS, Jung MJ, Roh SW, Nam YD, Park EJ, Bae JW (2011) Leucobacter celer sp. nov., isolated from Korean fermented seafood. Int J Syst Evol Microbiol 61:2353–2357CrossRefGoogle Scholar
  45. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  46. Sturm G, Jacobs J, Sproer C, Schumann P, Gescher J (2011) Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int J Syst Evol Microbiol 61:956–960CrossRefGoogle Scholar
  47. Sudhir K, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Evol Genet Anal 33:1870–1874Google Scholar
  48. Sun LN, Pan DD, Wu XW, Yang ED, Hua RM, Li QX (2017) Leucobacter triazinivorans sp. nov., a s-triazine herbicide prometryn-degrading bacterium isolated from sludge. Int J Syst Evol Microbiol 68:204–210CrossRefGoogle Scholar
  49. Takeuchi M, Weiss N, Schumann P, Yokota A (1996) Leucobacter komagatae gen. nov., sp. nov., a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:967–971CrossRefGoogle Scholar
  50. Tang S, Wang Y, Chen Y, Lou K, Cao L, Xu L, Li W (2009) Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2031CrossRefGoogle Scholar
  51. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  52. Toth BH, Blazics B, Kéry A (2008) Polyphenol composition and antioxidant capacity of Epilobium species. J Pharm Biomed Anal 49:26–31CrossRefGoogle Scholar
  53. Weon HY, Anandham R, Tamura T, Hamada M, Kim SJ, Kim YS, Suzuki KI, Kwon SW (2012) Leucobacter denitrificans sp. nov., isolated from cow dung. J Microbiol 50:161–165CrossRefGoogle Scholar
  54. Williams RT, Crawford RL (1983) Microbial diversity of minnesota peatlands. Microb Ecol 9:201–214CrossRefGoogle Scholar
  55. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153CrossRefGoogle Scholar
  56. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar
  57. Yun J, Roh SW, Kim M, Jung M, Park E, Shin K, Nam Y, Bae J (2011) Leucobacter salsicius sp. nov., from a salt-fermented food. Int J Syst Evol Microbiol 61:502–506CrossRefGoogle Scholar
  58. Zhu D, Zhang PP, Li PP, Wu J, Xie CX, Sun JZ, Niu LL (2016) Description of Leucobacter holotrichiae sp. nov., isolated from the gut of Holotrichia oblita larvae. Int J Syst Evol Microbiol 66:1857–1861CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China

Personalised recommendations