Antonie van Leeuwenhoek

, Volume 111, Issue 10, pp 1815–1823 | Cite as

Hymenobacter agri sp. nov., a novel bacterium isolated from soil

  • Jigon Han
  • Leonid N. Ten
  • Dong Hoon Lee
  • In-Kyu Kang
  • Hee-Young Jung
Original Paper


A bacterial isolate was recovered from a soil sample collected in Jeollabuk-do Province, South Korea, and subjected to polyphasic taxonomic assessment. Cells of the isolate, designated strain S1-2-1-2-1T, were observed to be rod-shaped, pink in color, and Gram-stain negative. The strain was able to grow at temperature range from 10 to 30 °C, with an optimum of 25 °C, and growth occurred at pH 6–8. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-1-2-1T belongs to the genus Hymenobacter, with closely related type strains being Hymenobacter daeguensis 16F3Y-2T (95.8% similarity), Hymenobacter rubidus DG7BT (95.8%), Hymenobacter soli PBT (95.7%), Hymenobacter terrenus MIMtkLc17T (95.6%), Hymenobacter terrae DG7AT (95.3%), and Hymenobacter saemangeumensis GSR0100T (95.2%). The genomic DNA G+C content of strain S1-2-1-2-1T was 63.0 mol%. The main polar lipid of this strain was phosphatidylethanolamine, the predominant respiratory quinone was menaquinone-7, and the major fatty acids were C15:0 iso (27.3%), summed feature 3 (C16:1 ω7c/C16:1 ω6c) (16.5%), C15:0 anteiso (15.3%), and C16:0 (14.7%), supporting the affiliation of this strain with the genus Hymenobacter. The results of this polyphasic analysis allowed for the genotypic and phenotypic differentiation of strain S1-2-1-2-1T from recognized Hymenobacter species. On the basis of its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain S1-2-1-2-1T is considered to represent a novel species of the genus Hymenobacter, for which the name Hymenobacter agri sp. nov. is proposed. The type strain is S1-2-1-2-1T (=KCTC 52739T = JCM 32194T).


Hymenobacter Bacteroidetes Soil bacteria 


Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2018_1070_MOESM1_ESM.pptx (56 kb)
Supplementary material 1 (PPTX 56 kb)
10482_2018_1070_MOESM2_ESM.pptx (2.6 mb)
Supplementary material 2 (PPTX 2650 kb)
10482_2018_1070_MOESM3_ESM.pptx (1.1 mb)
Supplementary material 3 (PPTX 1082 kb)
10482_2018_1070_MOESM4_ESM.docx (19 kb)
Supplementary material 4 (DOCX 18 kb)


  1. Aslam Z, Im WT, Ten LN, Lee MJ, Kim KH, Lee ST (2006) Lactobacillus siliginis sp. nov., isolated from wheat sourdough in South Korea. Int J Syst Evol Microbiol 56:2209–2213CrossRefGoogle Scholar
  2. Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868CrossRefGoogle Scholar
  3. Buczolits S, Denner EB, Kämpfer P, Busse HJ (2006) Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelupurpurascens’ and ‘Taxeobacter chitinovorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 56:2189–2192CrossRefGoogle Scholar
  4. Cappuccino JG, Sherman N (2010) Microbiology: a laboratory manual, 9th edn. Benjamin Cummings, San Francisco, USAGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  6. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  7. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  8. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  9. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21:374–383CrossRefGoogle Scholar
  10. Kang JY, Chun J, Choi A, Moon SH, Cho JC, Jahng KY (2013) Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 63:4568–4573CrossRefGoogle Scholar
  11. Kim KH, Im WT, Lee ST (2008) Hymenobacter soli sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 58:941–945CrossRefGoogle Scholar
  12. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  13. Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–205CrossRefGoogle Scholar
  14. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  15. Lee JJ, Joo ES, Kim EB, Jeon SH, Srinvasan S, Jung HY, Kim MK (2016) Hymenobacter rubidus sp. nov., bacterium isolated from a soil. Antonie Van Leeuwenhoek 109:457–466CrossRefGoogle Scholar
  16. Lee JJ, Park SJ, Lee YH, Ten LN, Jung HY (2017) Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. Int J Syst Evol Microbiol 67:1206–1211CrossRefGoogle Scholar
  17. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  18. Minnikin DE, O’Donnella AG, Goodfellowb M, Aldersonb G, Athalyeb M, Schaala A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  19. Munoz R, Rosselló-Móra R, Amann R (2016) Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 39:281–296CrossRefGoogle Scholar
  20. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  21. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  22. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  23. Srinivasan S, Lee JJ, Park KR, Park SH, Jung HY, Kim MK (2015) Hymenobacter terrae sp. nov., a bacterium isolated from soil. Curr Microbiol 70:643–650CrossRefGoogle Scholar
  24. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  25. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  26. Tang K, Yuan B, Lai Q, Wang R, Bao H, Feng FY (2015) Hymenobacter terrenus sp. nov., isolated from biological soil crusts. Int J Syst Evol Microbiol 65:4557–4562CrossRefGoogle Scholar
  27. Ten LN, Baek SH, Im WT, Lee M, Oh HW, Lee ST (2006) Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 56:2677–2681CrossRefGoogle Scholar
  28. Ten LN, Jung HM, Yoo SA, Im WT, Lee ST (2008) Lysobacter daecheongensis sp. nov., isolated from sediment of stream near the Daechung dam in South Korea. J Microbiol 46:519–524CrossRefGoogle Scholar
  29. Ten LN, Lee YH, Lee JJ, Park SJ, Lee SY, Park S, Lee DS, Kang IK, Jung HY (2017) Hymenobacter daeguensis sp. nov. isolated from river water. J Microbiol 55:253–259CrossRefGoogle Scholar
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  31. Tittsler RP, Sandholzer LA (1936) The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580PubMedPubMedCentralGoogle Scholar
  32. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  33. Wilson K (1997) Preparation of Genomic DNA from bacteria. In: Ausubel FM et al (eds) Current protocols in molecular biology, Jonh, New York, pp. 2.4.1–2.4.5Google Scholar
  34. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jigon Han
    • 1
  • Leonid N. Ten
    • 1
  • Dong Hoon Lee
    • 2
  • In-Kyu Kang
    • 3
  • Hee-Young Jung
    • 1
    • 4
  1. 1.College of Agricultural and Life SciencesKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Planning and Coordination DivisionNational Institute of Horticultural and Herbal Science, RDAWanjuRepublic of Korea
  3. 3.Department of Horticultural ScienceKyungpook National UniversityDaeguRepublic of Korea
  4. 4.Institute of Plant MedicineKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations