Advertisement

Antonie van Leeuwenhoek

, Volume 111, Issue 10, pp 1785–1805 | Cite as

Two new species of the Fusarium solani species complex isolated from compost and hibiscus (Hibiscus sp.)

  • Adnan Šišić
  • Abdullah M. S. Al-Hatmi
  • Jelena Baćanović-Šišić
  • Sarah A. Ahmed
  • Dominic Dennenmoser
  • G. Sybren de Hoog
  • Maria R. Finckh
Original Paper
  • 192 Downloads

Abstract

Two new species in the Fusarium solani species complex (FSSC) are described and introduced. The new taxa are represented by German isolates CBS 142481 and CBS 142480 collected from commercial yard waste compost and vascular tissue of a wilting branch of hibiscus, respectively. The phylogenetic relationships of the collected strains to one another and within the FSSC were evaluated based on DNA sequences of 6 gene loci. Due to the limited sequence data available for reference strains in GenBank, however, a multi-gene phylogenetic analysis included partial sequences for the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), translation elongation factor 1-alpha (tef1) and the RNA polymerase II second largest subunit (rpb2). Morphological and molecular phylogenetic data independently showed that these strains are distinct populations of the FSSC, nested within Clade 3. Thus, we introduce Fusarium stercicola and Fusarium witzenhausenense as novel species in the complex. In addition, 19 plant species of 7 legume genera were evaluated for their potential to host the newly described taxa. Eighteen plant species were successfully colonized, with 6 and 9 of these being symptomatic hosts for F. stercicola and F. witzenhausenense, respectively. As plants of the family Fabaceae are very distant to the originally sourced material from which the new taxa were recovered, our results suggest that F. stercicola and F. witzenhausenense are not host-specific and are ecologically fit to sustain stable populations in variety of habitats.

Keywords

Fusarium 2 new taxa Legumes Morphology Multi-locus phylogeny Root rot 

Notes

Acknowledgements

This research was funded by the Zentralen Forschungsförderung (ZFF) provided by the University of Kassel (Grant Number 1930).

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Al-Hatmi AMS, Hagen F, Menken SBJ et al (2016) Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015. Emerg Microbes Infect 5:e124.  https://doi.org/10.1038/emi.2016.126 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aoki T, O’Donnell K, Homma Y et al (2003) Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex—F. virguliforme in North America and F. tucumaniae in South America. Mycologia 95:660–684Google Scholar
  3. Aoki T, O’Donnell K, Geiser DM (2014) Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 80:189–201.  https://doi.org/10.1007/s10327-014-0509-3 CrossRefGoogle Scholar
  4. Appel O, Wollenweber HW (1910) Grundlagen einer Monographie der Gattung Fusarium (Link). Arbeit Biol f Land u -Forstwt 8:207Google Scholar
  5. Baćanović J (2015) Pathogens occurring in the winter pea—maize—winter wheat rotation, their host specificity and the potential of compost in suppressing foot and root disease of peas. Dissertation, University of Kassel, Witzenhausen. http://nbn-resolving.de/urn:nbn:de:hebis:34-2015091749047
  6. Balajee SA, Borman AM, Brandt ME et al (2009) Sequence-based identification of Aspergillus, Fusarium, and Mucorales species in the clinical mycology laboratory: where are we and where should we go from here? J Clin Microbiol 47:877–884.  https://doi.org/10.1128/JCM.01685-08 CrossRefPubMedGoogle Scholar
  7. Bollen GJ, Volker D, Wijnen AP (1989) Inactivation of soil-borne plant pathogens during small-scale composting of crop residues. Eur J Plant Pathol 95:19–30Google Scholar
  8. Bretz F, Hothorn T, Westfall PH (2011) Multiple comparisons using R. CRC Press, Boca RatonGoogle Scholar
  9. Bueno CJ, Fischer IH, Rosa DD et al (2014) Fusarium solani f. sp. passiflorae: a new forma specialis causing collar rot in yellow passion fruit. Plant Pathol 63(2):382–389.  https://doi.org/10.1111/ppa.12098 CrossRefGoogle Scholar
  10. Cai L, Giraud T, Zhang N et al (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers 50:121–133.  https://doi.org/10.1007/s13225-011-0127-8 CrossRefGoogle Scholar
  11. Chung WC, Chen LW, Huang JH et al (2011) A new ‘forma specialis’ of Fusarium solani causing leaf yellowing of Phalaenopsis. Plant Pathol 60:244–252.  https://doi.org/10.1111/j.1365-3059.2010.02376.x CrossRefGoogle Scholar
  12. Conover WJ (1999) Practical nonparametric statistics. Wiley, New YorkGoogle Scholar
  13. Geiser DM, Jiménez-Gasco MMD, Kang S et al (2004) FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479CrossRefGoogle Scholar
  14. Geiser DM, Aoki T, Bacon CW et al (2013) One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103:400–408CrossRefGoogle Scholar
  15. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  16. Hassan N, Shimizu M, Hyakumachi M (2014) Occurrence of root rot and vascular wilt diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt. Mycobiology 42:66.  https://doi.org/10.5941/myco.2014.42.1.66 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Isaac S (1992) Fungal plant interaction. Chapman & Hall, LondonGoogle Scholar
  18. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefGoogle Scholar
  19. Kolander TM, Bienapfl JC, Kurle JE et al (2012) Symptomatic and asymptomatic host range of Fusarium virguliforme, the causal agent of soybean sudden death syndrome. Plant Dis 96:1148–1153CrossRefGoogle Scholar
  20. Kolattukudy PE, Gamble DL (1995) Nectria haematococca: pathogenesis and host specificity in plant diseases. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity in plant pathogenic fungi and nematodes. Elsevier, Oxford, pp 83–102Google Scholar
  21. Kornerup A, Wanscher JH (1978) Methuen handbook of colour. Eyre Methuen, LondonGoogle Scholar
  22. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell publishing, AmesCrossRefGoogle Scholar
  23. Li W, Cowley A, Uludag M et al (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43(W1):W580–W584.  https://doi.org/10.1093/nar/gkv279 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808CrossRefGoogle Scholar
  25. Lombard L, van der Merwe NA, Groenewald JZ et al (2015) Generic concepts in Nectriaceae. Stud Mycol 80:189–245.  https://doi.org/10.1016/j.simyco.2014.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Matheny PB, Liu YJ, Ammirati JF et al (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am J Bot 89:688–698CrossRefGoogle Scholar
  27. Matuo T, Snyder WC (1973) Use of morphology and mating populations in the identification of formae speciales in Fusarium solani. Phytopathology 63:562–565CrossRefGoogle Scholar
  28. McNeil J, Barrie FR, Buck WR, et al. (2012) International Code of Nomenclature for algae, fungi and plants (Melbourne Code). In: Eighteenth International Botanical Congress Melbourne, Australia: A. R. G. Gantner Verlag KG. Regnum Vegetabile 154. http://herbario.udistrital.edu.co/herbario/images/stories/international%20code%20of%20nomenclature.pdf
  29. Miller MA, Pfeiffer W and Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway computing environments workshop (GCE), 2010, IEEE, pp 1–8Google Scholar
  30. Nalim FA, Samuels GJ, Wijesundera RL et al (2011) New species from the Fusarium solani species complex derived from perithecia and soil in the Old World tropics. Mycologia 103:1302–1330.  https://doi.org/10.3852/10-307 CrossRefPubMedGoogle Scholar
  31. Nelson PE, Tousson TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification. Pennsylvania State University Press, University ParkGoogle Scholar
  32. Nirenberg HI (1976) Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium Sektion Liseola. Mitteilungen der Biologischen Bundesanstalt für Land- und Forstwirtschaft (Berlin-1. Dahlem) 169:1–17.  https://doi.org/10.1002/jpln.19771400220 CrossRefGoogle Scholar
  33. Nylander JAA (2004) MrModeltest v25. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, p 2Google Scholar
  34. O’Donnell K (2000) Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92:919.  https://doi.org/10.2307/3761588 CrossRefGoogle Scholar
  35. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116CrossRefGoogle Scholar
  36. O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465.  https://doi.org/10.2307/3761407 CrossRefGoogle Scholar
  37. O’Donnell K, Sutton DA, Fothergill A et al (2008) Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J Clin Microbiol 46:2477–2490.  https://doi.org/10.1128/JCM.02371-07 CrossRefPubMedPubMedCentralGoogle Scholar
  38. O’Donnell K, Ward TJ, Robert V et al (2015) DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica 43:583–595.  https://doi.org/10.1007/s12600-015-0484-z CrossRefGoogle Scholar
  39. O’Donnell K, Sutton DA, Wiederhold N et al (2016) Veterinary Fusarioses within the United States. J Clin Microbiol 54:2813–2819.  https://doi.org/10.1128/JCM.01607-16 CrossRefPubMedPubMedCentralGoogle Scholar
  40. R Core Team (2013) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  41. Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634CrossRefGoogle Scholar
  42. Sandoval-Denis M, Guarnaccia V, Polizzi G et al (2017) Symptomatic Citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora species. Persoonia 2018:1–25.  https://doi.org/10.3767/persoonia.2018.40.01 CrossRefGoogle Scholar
  43. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246.  https://doi.org/10.1073/pnas.1117018109 CrossRefPubMedGoogle Scholar
  44. Schroers HJ, Samuels GJ, Zhang N et al (2016) Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia 108:806–819.  https://doi.org/10.3852/15-255 CrossRefPubMedGoogle Scholar
  45. Šišić A, Baćanović J, Finckh MR (2017) Endophytic Fusarium equiseti stimulates plant growth and reduces root rot disease of pea (Pisum sativum L.) caused by Fusarium avenaceum and Peyronellaea pinodella. Eur J Plant Pathol 148:271–282.  https://doi.org/10.1007/s10658-016-1086-4 CrossRefGoogle Scholar
  46. Šišić A, Baćanović-Šišić J, Karlovsky P et al (2018a) Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum). PLOS ONE 13:e0191969.  https://doi.org/10.1371/journal.pone.0191969 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Šišić A, Baćanović-Šišić J, Al-Hatmi AMS et al (2018b) The ‘forma specialis’ issue in Fusarium: A case study in Fusarium solani f. sp. pisi. Scientific Reports.  https://doi.org/10.1038/s41598-018-19779-z CrossRefPubMedPubMedCentralGoogle Scholar
  48. Snyder WC, Hansen HN (1941) The species concept in Fusarium with reference to section Martiella. Am J Bot 28:738.  https://doi.org/10.2307/2436658 CrossRefGoogle Scholar
  49. Stiller JW, Hall BD (1997) The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci 94(9):4520–4525CrossRefGoogle Scholar
  50. Summerbell RC, Lévesque CA, Seifert KA et al (2005) Microcoding: the second step in DNA barcoding. Philos Trans R Soc B 360:1897–1903.  https://doi.org/10.1098/rstb.2005.1721 CrossRefGoogle Scholar
  51. Sung GH, Sung JM, Hywel-Jones NL et al (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 44:1204–1223.  https://doi.org/10.1016/j.ympev.2007.03.011 CrossRefPubMedGoogle Scholar
  52. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Taylor JW, Jacobson DJ, Kroken S et al (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32.  https://doi.org/10.1006/fgbi.2000.1228 CrossRefPubMedGoogle Scholar
  54. Termorshuizen AJ, van Rijn E, Blok WJ (2005) Phytosanitary risk assessment of composts. Compost Sci Util 13:108–115.  https://doi.org/10.1080/1065657X.2005.10702226 CrossRefGoogle Scholar
  55. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246CrossRefGoogle Scholar
  56. von Martius CFP (1842) Die Kartoffelepidemie der letzen Jahre, oder die Stockfäule und Raude der Kartoffeln, geschildert und ihren ursächlichen Verhältnissen erörtet. Denkschrift Munchen Akad, Wiss, p 70Google Scholar
  57. White TJ, Bruns T, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ et al (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  58. Wollenweber HW, Reinking OA (1935) Die Fusarien, ihre Beschreibung, Schadwirkung, und Bekaämpfung. Paul Parey, BerlinGoogle Scholar
  59. Zhang N, O’Donnell K, Sutton DA et al (2006) Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol 44:2186–2190.  https://doi.org/10.1128/JCM.00120-06 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ecological Plant ProtectionUniversity of KasselWitzenhausenGermany
  2. 2.Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
  3. 3.Centre of Expertise in MycologyRadboud University Medical Centre/Canisius Wilhelmina HospitalNijmegenThe Netherlands
  4. 4.Directorate General of Health ServicesMinistry of Health, Ibri HospitalIbriOman
  5. 5.Department of Organic Plant Breeding and AgrobiodiversityUniversity of KasselWitzenhausenGermany
  6. 6.Faculty of Medical Laboratory SciencesUniversity of KhartoumKhartoumSudan
  7. 7.Basic Pathology DepartmentFederal University of Paraná StateCuritibaBrazil

Personalised recommendations