Rhodobacter sp. Rb3, an aerobic anoxygenic phototroph which thrives in the polyextreme ecosystem of the Salar de Huasco, in the Chilean Altiplano

  • Vilma Pérez
  • Cristina Dorador
  • Verónica Molina
  • Carolina Yáñez
  • Martha Hengst
Original Paper

Abstract

The Salar de Huasco is an evaporitic basin located in the Chilean Altiplano, which presents extreme environmental conditions for life, i.e. high altitude (3800 m.a.s.l.), negative water balance, a wide salinity range, high daily temperature changes and the occurrence of the highest registered solar radiation on the planet (> 1200 W m−2). This ecosystem is considered as a natural laboratory to understand different adaptations of microorganisms to extreme conditions. Rhodobacter, an anoxygenic aerobic phototrophic bacterial genus, represents one of the most abundant groups reported based on taxonomic diversity surveys in this ecosystem. The bacterial mat isolate Rhodobacter sp. strain Rb3 was used to study adaptation mechanisms to stress-inducing factors potentially explaining its success in a polyextreme ecosystem. We found that the Rhodobacter sp. Rb3 genome was characterized by a high abundance of genes involved in stress tolerance and adaptation strategies, among which DNA repair and oxidative stress were the most conspicuous. Moreover, many other molecular mechanisms associated with oxidative stress, photooxidation and antioxidants; DNA repair and protection; motility, chemotaxis and biofilm synthesis; osmotic stress, metal, metalloid and toxic anions resistance; antimicrobial resistance and multidrug pumps; sporulation; cold shock and heat shock stress; mobile genetic elements and toxin–antitoxin system were detected and identified as potential survival mechanism features in Rhodobacter sp. Rb3. In total, these results reveal a wide set of strategies used by the isolate to adapt and thrive under environmental stress conditions as a model of polyextreme environmental resistome.

Keywords

Environmental resistome Alphaproteobacteria Extremotolerance Microbial mat 

Notes

Acknowledgements

We thank Juan Ugalde for support in bioinformatic analysis. We thank Jaime Guerrero, Pedro Luca, Margarita Luca for assistance during field trips.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2018_1067_MOESM1_ESM.doc (570 kb)
Supplementary Table 1 Environmental resistome of Rhodobacter sp. Rb3. Genes encoding for proteins involved in each putative class of adaptation strategies to extreme environmental conditions. COG: Clusters of Orthologous Groups. Supplementary material 1 (DOC 570 kb)
10482_2018_1067_MOESM2_ESM.doc (109 kb)
Supplementary Table 2 Metabolic profile of Rhodobacter sp. Rb3. Supplementary material 2 (DOC 109 kb)

References

  1. Aguilar P, Acosta E, Dorador C, Sommaruga R (2016) Large differences in bacterial community composition among three nearby extreme waterbodies of the high Andean plateau. Front Microbiol 7:976.  https://doi.org/10.3389/fmicb.2016.00976 PubMedPubMedCentralGoogle Scholar
  2. Albarracín VH, Pathak GP, Douki T, Cadet J, Borsarelli CD, Gärtner W, Farías ME (2012) Extremophilic Acinetobacter strains from high-altitude lakes in Argentinean Puna: remarkable UV-B resistance and efficient DNA damage repair. Orig Life Evol Biosph 42:201–221.  https://doi.org/10.1007/s11084-012-9276-3 CrossRefPubMedGoogle Scholar
  3. Albarracín VH, Simon J, Pathak GP, Valle L, Douki T, Cadet J, Borsarelli CD, Farías ME, Gärtner W (2014) First characterisation of a CPD-class I photolyase from a UV-resistant extremophile isolated from High-Altitude Andean Lakes. Photochem Photobiol Sci 13:739–750.  https://doi.org/10.1039/C3PP50399B CrossRefPubMedGoogle Scholar
  4. Albarracín VH, Kurth D, Ordoñez OF et al (2015) High-up: a remote reservoir of microbial extremophiles in central Andean Wetlands. Front Microbiol 6:1404.  https://doi.org/10.3389/fmicb.2015.01404 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Altendorf K, Booth IR, Gralla JD, Greie JC, Rosenthal AZ, Wood JM (2009) Osmotic stress. In: Curtiss R III et al (eds) EcoSal Escherichia coli and Salmonella:cellular and molecular biology. ASM Press, Washington, DC.  https://doi.org/10.1128/ecosalplus.5.4.5 Google Scholar
  6. Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158.  https://doi.org/10.3389/fmicb.2011.00158 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arnoux B, Ducruix F, Reiss-Husson F, Lutz M, Norris J, Schiffer M, Chang CH (1989) Structure of spheroidene in the photosynthetic reaction center from Y Rhodobacter sphaeroides. FEBS Lett 258(1):47–50CrossRefPubMedGoogle Scholar
  8. Augusto-Pinto L, Regis da Silva CG, de Oliveira Lopes D, Machado-Silva A, Machado CR (2003) Escherichia coli as a model system to study DNA repair genes of eukaryotic organisms. Genet Mol Res 2(1):77–91PubMedGoogle Scholar
  9. Bakhlanova IV, Dudkina AV, Baitin DM (2013) Enzymatic control of homologous recombination in Escherichia coli cells and hyper-recombination. Mol Biol 47(2):205–217.  https://doi.org/10.7868/S0026898413020031 CrossRefGoogle Scholar
  10. Bebout BM, Garcia-Pichel F (1995) UV B-induced vertical migrations of cyanobacteria in a microbial mat. Appl Environ Microbiol 61(12):4215–4222PubMedPubMedCentralGoogle Scholar
  11. Bentchikou E, Servant P, Coste G, Sommer S (2010) A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans. PLoS Genet 6(1):e1000774.  https://doi.org/10.1371/journal.pgen.1000774 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72(1):19–54.  https://doi.org/10.1146/annurev.biochem.72.121801.161737 CrossRefPubMedGoogle Scholar
  13. Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 273-4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191(7):2340–2352.  https://doi.org/10.1128/JB.01377-08 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Berglund B (2015) Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol 5:28564.  https://doi.org/10.3402/iee.v5.28564 CrossRefPubMedGoogle Scholar
  15. Berndt C, Lillig CH, Holmgren A (2008) Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta 1783(4):641–650.  https://doi.org/10.1016/j.bbamcr.2008.02.003 CrossRefPubMedGoogle Scholar
  16. Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M et al (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4(1):14.  https://doi.org/10.3390/microorganisms4010014 CrossRefPubMedCentralGoogle Scholar
  17. Boscari A, Mandon K, Dupont L, Poggi MC, Le Rudulier D (2002) BetS is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti. J Bacteriol 184(10):2654–2663.  https://doi.org/10.1128/JB.184.10.2654-2663.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bugay AN, Krasavin EA, Parkhomenko AY, Vasilyeva MA (2015) Modeling nucleotide excision repair and its impact on UV-induced mutagenesis during SOS-response in bacterial cells. J Theor Biol 364:7–20.  https://doi.org/10.1016/j.jtbi.2014.08.041 CrossRefPubMedGoogle Scholar
  19. Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8PubMedGoogle Scholar
  20. Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5(2):a012559.  https://doi.org/10.1101/cshperspect.a012559 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of “omic” technologies. Trends Microbiol 18(8):374–381.  https://doi.org/10.1016/j.tim.2010.05.002 CrossRefPubMedGoogle Scholar
  22. Castro-Severyn J, Remonsellez F, Valenzuela SL, Salinas C, Fortt J, Aguilar P et al (2017) Comparative genomics analysis of a new Exiguobacterium strain from Salar de Huasco reveals a repertoire of stress-related genes and arsenic resistance. Front Microbiol 8:456.  https://doi.org/10.3389/fmicb.2017.00456 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chandrangsu P, Rensing C, Helmann JD (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15:338–350.  https://doi.org/10.1038/nrmicro.2017.15 CrossRefPubMedGoogle Scholar
  24. Chen L, Spiliotis ET, Roberts MF (1998) Biosynthesis of Di-myo-Inositol-1,1′-Phosphate, a novel osmolyte in hyperthermophilic archaea. J Bacteriol 180(15):3785–3792PubMedPubMedCentralGoogle Scholar
  25. Chen LZ, Wang GH, Hong S, Liu A, Li C, Liu YD (2009) UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. J Integr plant Biol 51(2):194–200.  https://doi.org/10.1111/j.1744-7909.2008.00784.x CrossRefPubMedGoogle Scholar
  26. Christensen-Dalsgaard M, Gerdes K (2006) Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Mol Microbiol 62(2):397–411.  https://doi.org/10.1111/j.1365-2958.2006.05385.x CrossRefPubMedGoogle Scholar
  27. Coussens NP, Daines DA (2016) Wake me when it’s over—bacterial toxin–antitoxin proteins and induced dormancy. Exp Biol Med 241:1332–1342.  https://doi.org/10.1177/1535370216651938 CrossRefGoogle Scholar
  28. de Bruijn FJ (2016) Stress and environmental regulation of gene expression and adaptation in bacteria, 1st edn. Wiley, New Jersey.  https://doi.org/10.1002/9781119004813 CrossRefGoogle Scholar
  29. Dib J, Motok J, Zenoff VF, Ordoñez O, Farías ME (2008) Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands. Curr Microbiol 56(5):510–517.  https://doi.org/10.1007/s00284-008-9103-2 CrossRefPubMedGoogle Scholar
  30. Dorador C, Vila I, Remonsellez F, Imhoff JF, Witzel KP (2010) Unique clusters of Archaea in Salar de Huasco, an athalassohaline evaporitic basin of the Chilean Altiplano. FEMS Microbiol Ecol 73(2):291–302.  https://doi.org/10.1111/j.1574-6941.2010.00891.x PubMedGoogle Scholar
  31. Dorador C, Vila I, Witzel KP, Imhoff JF (2013) Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fund Appl Limnol 182(2):135–159.  https://doi.org/10.1127/1863-9135/2013/0393 CrossRefGoogle Scholar
  32. Fiebig A, Castro Rojas CM, Siegal-Gaskins D, Crosson S (2010) Interaction specificity, toxicity and regulation of a paralogous set of ParE/RelE-family toxin–antitoxin systems. Mol Microbiol 77:236–251.  https://doi.org/10.1111/j.1365-2958.2010.07207.x CrossRefPubMedPubMedCentralGoogle Scholar
  33. Filippidou S, Wunderlin T, Junier T, Jeanneret N, Dorador C, Molina V, Johnson D, Junier P (2016) A combination of extreme environmental conditions favor the prevalence of endospore-forming Firmicutes. Front Microbiol 7:1707.  https://doi.org/10.3389/fmicb.2016.01707 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fishel R (2015) Mismatch repair. J Biol Chem 290(44):26395–26403.  https://doi.org/10.1074/jbc.R115.660142 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fitzpatrick D, Walsh F (2016) Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiol Ecol 92(2):1–8.  https://doi.org/10.1093/femsec/fiv168 CrossRefGoogle Scholar
  36. Fräre M, Rijks JQ, Rea J (1975) Estudio agroclimatológico de la zona andina. FAO, RomaGoogle Scholar
  37. Frösler J, Panitz C, Wingender J, Flemming HC, Rettberg P (2017) Survival of Deinococcus geothermalis in biofilms under desiccation and simulated space and martian conditions. Astrobiology 17(5):431–447.  https://doi.org/10.1089/ast.2015.1431 CrossRefPubMedGoogle Scholar
  38. Galinski E, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15(2–3):95–108.  https://doi.org/10.1111/j.1574-6976.1994.tb00128.x CrossRefGoogle Scholar
  39. Giotta L, Agostiano A, Italiano F, Milano F, Trotta M (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 62(9):1490–1499.  https://doi.org/10.1016/j.chemosphere.2005.06.014 CrossRefPubMedGoogle Scholar
  40. Girija KR, Sasikala Ch, Ramana ChV, Spröer C, Takaichi S, Thiel V, Imhoff JF (2010) Rhodobacter johrii sp. nov., an endospore-producing cryptic species isolated from semi-arid tropical soils. Int J Syst Evol Microbiol 60:2099–2107.  https://doi.org/10.1099/ijs.0.011718-0 CrossRefPubMedGoogle Scholar
  41. Giuliodori AM, Di Pietro F, Marzi S, Masquida B, Wagner R, Romby P, Gualerzi CP, Pon CL (2010) The cspA mRNA Is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37(1):21–33.  https://doi.org/10.1016/j.molcel.2009.11.033 CrossRefPubMedGoogle Scholar
  42. Glaeser J, Klug G (2005) Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiology 151(6):1927–1938.  https://doi.org/10.1099/mic.0.27789-0 CrossRefPubMedGoogle Scholar
  43. Glaeser J, Nuss AM, Berghoff BA, Klug G (2011) Singlet oxygen stress in microorganisms. Adv Microb Physiol 58:142–173.  https://doi.org/10.1016/B978-0-12-381043-4.00004-0 Google Scholar
  44. Goh KM, Chan KG, Lim SW, Liew KJ, Chan CS, Shamsir MS, Ee R, Adrian TGS (2016) Genome analysis of a new Rhodothermaceae strain isolated from a hot spring. Front Microbiol 7:1109.  https://doi.org/10.3389/fmicb.2016.01109 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gorriti MF, Dias GM, Chimetto LA, Trindade-Silva AE, Silva BS, Mesquita MM, Gregoracci GB, Farías ME, Thompson CC, Thompson FL (2014) Genomic and phenotypic attributes of novel Salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genomics 15:473.  https://doi.org/10.1186/1471-2164-15-473 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity: a Darwinian view of the evolution of microbes. EMBO Rep 2:376–381.  https://doi.org/10.1093/embo-reports/kve097 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5(12):928–938.  https://doi.org/10.1038/nrmicro1774 CrossRefPubMedGoogle Scholar
  48. Hernández KL, Yannicelli B, Olsen LM, Dorador C, Menschel EJ, Molina V, Ramonsellez F, Hengst MB, Jeffrey WH (2016) Microbial activity response to solar radiation across contrasting environmental conditions in Salar de Huasco, Northern Chilean Altiplano. Front Microbiol 7:1857.  https://doi.org/10.3389/fmicb.2016.01857 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hoffmann T, Bremer E (2011) Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 193(7):1552–1562.  https://doi.org/10.1128/JB.01319-10 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Horiyama T, Nishino K (2014) AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin export in Escherichia coli. PLoS ONE.  https://doi.org/10.1371/journal.pone.0108642 PubMedPubMedCentralGoogle Scholar
  51. Huang M, Hull CM (2017) Sporulation: how to survive on planet Earth (and beyond). Curr Genet 63(5):831–838.  https://doi.org/10.1007/s00294-017-0694-7 CrossRefPubMedGoogle Scholar
  52. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, Von Mering C, Bork P (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:286–293.  https://doi.org/10.1093/nar/gkv1248 CrossRefGoogle Scholar
  53. Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11(7):443–454.  https://doi.org/10.1038/nrmicro3032 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jamet A, Kiss E, Batut J, Puppo A, Hérouart D (2005) The kata catalase gene is regulated by OxyR in both free-living and symbiotic Sinorhizobium meliloti. J Bacteriol 187(1):376–381.  https://doi.org/10.1128/JB.187.1.376-381.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Janion C (2008) Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int J Biol Sc 4(6):338–344.  https://doi.org/10.7150/ijbs.4.338 CrossRefGoogle Scholar
  56. Kish A, Kirkali G, Robinson C, Rosenblatt R, Aruga J, Disdaroglu M et al (2009) Salt shiel: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol 11(5):1066–1078.  https://doi.org/10.1111/j.1462-2920.2008.01828.x CrossRefPubMedGoogle Scholar
  57. Korshunov SS, Imlay JA (2002) A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Mol Microbiol 43(1):95–106.  https://doi.org/10.1046/j.1365-2958.2002.02719.x CrossRefPubMedGoogle Scholar
  58. Kress W, Maglica Z, Weber-Ban E (2009) Clp chaperone-protease: structure and function. Res Microbiol 160:618–628.  https://doi.org/10.1016/j.resmic.2009.08.006 CrossRefPubMedGoogle Scholar
  59. Kurth D, Belfiore C, Gorriti MF, Cortez N, Farias ME, Albarracín VH (2015) Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3. Front Microbiol.  https://doi.org/10.3389/fmicb.2015.00328 Google Scholar
  60. Kurth D, Amadio A, Ordoñez OF, Albarracín VH, Gärtner W, Farías ME (2017) Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci Rep 7(1):1024.  https://doi.org/10.1038/s41598-017-00896-0 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lebre PH, De Maayer P, Cowan DA (2017) Xerotolerant bacteria: surviving through a dry spell. Nat Rev Microbiol 15(5):285–296.  https://doi.org/10.1038/nrmicro.2017.16 CrossRefPubMedGoogle Scholar
  62. Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18(7):1730–1737.  https://doi.org/10.1093/emboj/18.7.1730 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA 93(26):15036–15040.  https://doi.org/10.1073/pnas.93.26.15036 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98.  https://doi.org/10.1038/cr.2007.115 CrossRefPubMedGoogle Scholar
  65. Li K, Hein S, Zou W, Klug G (2004) The glutathione-glutaredoxin system in Rhodobacter capsulatus: part of a complex regulatory network controlling defense against oxidative stress. J Bacteriol 186(20):6800–6808CrossRefPubMedPubMedCentralGoogle Scholar
  66. Li T, Weng Y, Ma X, Tian B, Dai S, Jin Y, Liu M, Li J, Yu J, Hua Y (2017) Deinococcus radiodurans toxin–antitoxin MazEF-dr mediates cell death in response to DNA damage stress. Front Microbiol 8:1427.  https://doi.org/10.3389/fmicb.2017.01427 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lucas-Lledó JI, Lynch M (2009) Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family. Mol Biol Evol 26(5):1143–1153.  https://doi.org/10.1093/molbev/msp029 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Mao D, Grogan DW (2017) How a genetically stable extremophile evolves: modes of genome diversification in the archaeon Sulfolobus acidocaldarius. J Bacteriol.  https://doi.org/10.1128/JB.00177-17 PubMedCentralGoogle Scholar
  69. Martínez-del Campo A, Ballado T, Camarena L, Dreyfus G (2011) In Rhodobacter sphaeroides, chemotactic operon 1 regulates rotation of the flagellar system 2. J Bacteriol 193(23):6781–6786.  https://doi.org/10.1128/JB.05933-11 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Mattison K, Wilbur JS, So M, Brennan RG (2006) Structure of FitAB from Neisseria gonorrhoeae bound to DNA reveals a tetramer of toxin–antitoxin heterodimers containing pin domains and ribbon-helix–helix motifs. J Biol Chem 281(49):37942–37951.  https://doi.org/10.1074/jbc.M605198200 CrossRefPubMedGoogle Scholar
  71. Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P, Doherty AJ et al (2007) Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. J Bacteriol 189(8):3306–3311.  https://doi.org/10.1128/JB.00018-07 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Molina V, Hernández K, Dorador C, Eissler Y, Hengst M, Pérez V, Harrod C (2016) Bacterial active community cycling in response to solar radiation and their influence on nutrient changes in a high-altitude wetland. Front Microbiol 7:1823.  https://doi.org/10.3389/fmicb.2016.01823 PubMedPubMedCentralGoogle Scholar
  73. Monastiriakos SK, Doiron KMJ, Siponen MI, Cupples CG (2004) Functional interactions between the MutL and Vsr proteins of Escherichia coli are dependent on the N-terminus of Vsr. DNA Repair (Amst) 3(6):639–647.  https://doi.org/10.1016/j.dnarep.2004.02.008 CrossRefGoogle Scholar
  74. Park JS, Marr MT, Roberts JW (2002) E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109(6):757–767.  https://doi.org/10.1016/S0092-8674(02)00769-9 CrossRefPubMedGoogle Scholar
  75. Pérez V, Hengst M, Kurte L, Dorador C, Jeffrey WH, Wattiez R, Molina V, Matallana-Surget S (2017) Bacterial survival under extreme UV radiation: a comparative proteomics study of Rhodobacter sp., isolated from high altitude wetlands in Chile. Front Microbiol 8:1173.  https://doi.org/10.3389/fmicb.2017.01173 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136PubMedGoogle Scholar
  77. Pichereau V, Pocard -A, Hamelin J, Blanco C, Bernard T (1998) Differential effects of dimethylsulfoniumpropionate, dimethylsulfonioacetate, and other S-methylated compounds on the growth of Sinorhizobium meliloti at low and high osmolarities. Appl Environ Microbiol 64:1420–1429PubMedPubMedCentralGoogle Scholar
  78. Pilonieta MC, Nagy TA, Jorgensen DR, Detweiler CS (2012) A glycine betaine importer limits Salmonella stress resistance and tissue colonization by reducing trehalose production. Mol Microbiol 84(2):296–309.  https://doi.org/10.1111/j.1365-2958.2012.08022.x CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ram Y, Hadany L (2014) Stress-induced mutagenesis and complex adaptation. Proc Biol Sci B 281(1792):20141025.  https://doi.org/10.1098/rspb.2014.1025 CrossRefGoogle Scholar
  80. Rastogi RP, Richa Kumar A, Tyagi MB, Sinha RP (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids.  https://doi.org/10.4061/2010/592980 PubMedPubMedCentralGoogle Scholar
  81. Riesenman PJ, Nicholson WL (2000) Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl Environ Microbiol 66(2):620–626.  https://doi.org/10.1128/AEM.66.2.620-626.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Risacher F, Alonso H, Salazar C (1999) Geoquímica de aguas en cuencias cerradas: I, II y III regiones-Chile. Ministerio de Obras Públicas, Dirección general de Aguas, SantiagoGoogle Scholar
  83. Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Sci Rev 63(3–4):249–293.  https://doi.org/10.1016/S0012-8252(03)00037-0 CrossRefGoogle Scholar
  84. Sancar A (2008) Structure and Function of Photolyase and in VivoEnzymology: 50th Anniversary. J Biol Chem 283(47):32153–32157.  https://doi.org/10.1074/jbc.R800052200 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Schnell S, Steinman HM (1995) Function and stationary-phase induction of periplasmic copper–zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus. J Bacteriol 177(20):5924–5929.  https://doi.org/10.1128/jb.177.20.5924-5929.1995 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Seckbach J, Oren A, Stan-lotter H (2013) Polyextremophiles: life under multiple forms of stress. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-6488-0 CrossRefGoogle Scholar
  87. Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:1–13.  https://doi.org/10.3389/fmicb.2013.00047 CrossRefGoogle Scholar
  88. Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75(1):133–191.  https://doi.org/10.1128/MMBR.00015-10 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26(1):49–71.  https://doi.org/10.1111/j.1574-6976.2002.tb00598.x CrossRefPubMedGoogle Scholar
  90. Storz G, Hengge R (2011) Bacterial stress responses. ASM Press, Washington, DCGoogle Scholar
  91. Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69(4):2313–2320.  https://doi.org/10.1128/AEM.69.4.2313 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Tsuzuki M, Moskvin OV, Kuribayashi M, Sato K, Retamal S, Abo M et al (2011) Salt stress-induced changes in the transcriptome, compatible solutes, and membrane lipids in the facultatively phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 77(21):7551–7559.  https://doi.org/10.1128/AEM.05463-11 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the high Arctic. Appl Environ Microbiol 78(2):549–559.  https://doi.org/10.1128/AEM.06354-11 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Warner DF, Ndwandwe DE, Abrahams GL, Kana BD, Machowski EE, Venclovas Č, Mizrahi V (2010) Essential roles for imuA′- and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 107(29):13093–13098.  https://doi.org/10.1073/pnas.1002614107 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Webb KM, DiRuggiero J (2012) Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea. Archaea.  https://doi.org/10.1155/2012/845756 PubMedPubMedCentralGoogle Scholar
  96. Weber MHW, Klein W, Müller L, Niess UM, Marahiel MA (2001) Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol 39(5):1321–1329.  https://doi.org/10.1046/j.1365-2958.2001.02322.x CrossRefPubMedGoogle Scholar
  97. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186.  https://doi.org/10.1038/nrmicro1614 CrossRefPubMedGoogle Scholar
  98. Yamaguchi Y, Inouye M (2011) Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nat Rev Microbiol 9(11):779–790.  https://doi.org/10.1038/nrmicro2651 CrossRefPubMedGoogle Scholar
  99. Ziegelhoffer EC, Donohue TJ (2009) Bacterial responses to photo-oxidative stress. Nat Rev Microbiol 7(12):856–863.  https://doi.org/10.1038/nrmicro2237 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vilma Pérez
    • 1
    • 2
  • Cristina Dorador
    • 2
    • 3
  • Verónica Molina
    • 4
  • Carolina Yáñez
    • 5
  • Martha Hengst
    • 1
    • 2
  1. 1.Laboratory of Molecular Ecology and Applied Microbiology, Departamento de Ciencias FarmacéuticasUniversidad Católica del NorteAntofagastaChile
  2. 2.Centre for Biotechnology & Bioengineering (CeBiB)SantiagoChile
  3. 3.Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Departamento de BiotecnologíaUniversidad de AntofagastaAntofagastaChile
  4. 4.Departamento de Biología, Facultad de Ciencias Naturales y ExactasUniversidad de Playa AnchaValparaisoChile
  5. 5.Laboratorio Microbiología, Instituto de Biología, Facultad de CienciasPontificia Universidad Católica de ValparaísoValparaisoChile

Personalised recommendations