The role of corynomycolic acids in Corynebacterium-host interaction

Review
  • 62 Downloads

Abstract

Within the Actinobacteria, the genera Corynebacterium, Mycobacterium, Nocardia and Rhodococcus form the so-called CMNR group, also designated as mycolic acid-containing actinomycetes. Almost all members of this group are characterized by a mycolic acid layer, the mycomembrane, which covers the cell wall and is responsible for a high resistance of these bacteria against chemical and antibiotic stress. Furthermore, components of the mycomembrane are crucial for the interaction of bacteria with host cells. This review summarizes the current knowledge of mycolic acid synthesis and interaction with components of the immune system for the genus Corynebacterium with an emphasis on the pathogenic species Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis and Corynebacterium ulcerans as well as the biotechnology workhorse Corynebacterium glutamicum.

Keywords

Cord factor Corynomycolic acids Diphtheria Lipidomics Mycomembrane 

Notes

Acknowledgements

The help of S. Morbach and G. Seidel (Friedrich-Alexander-Universität Erlangen-Nürnberg) with the preparation of figures is gratefully acknowledged.

Conflict of Interest

The author declares that he has no conflict of interest.

References

  1. Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SH, Haas A, Schaible UE (2008) Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol 10:1530–1545CrossRefPubMedGoogle Scholar
  2. Azuma I, Taniyama T, Sugimura K, Aladin AA, Yamamura Y (1976) Mitogenic activity of the cell walls of mycobacteria, norcardia, corynebacteria and anaerobic coryneforms. Japan J Microbiol 20:263–271CrossRefGoogle Scholar
  3. Bansal-Mutalik R, Nikaido H (2011) Quantitative lipid composition of cell envelopes of Corynebacterium glutamicum elucidated through reverse micelle extraction. Proc Natl Acad Sci USA 108:15360–15365CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barkan D, Hedhli D, Yan H-G, Huygen K, Glickman MS (2012) Mycobacterium tuberculosis lacking all mycolic acid cyclopropanation is viable but highly attenuated and hyperinflammatory in mice. Infect Immun 80:1958–1968CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bhatt A, Fujiwara N, Bhatt K, Gurcha SS, Kremer L, Chen B, Chan J, Porcelli SA, Kobayashi K, Besra GS, Jacobs WR Jr (2007) Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci USA 104:515751–515762Google Scholar
  6. Brand S, Niehaus K, Pühler A, Kalinowski J (2003) Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Arch Microbiol 180:33–44CrossRefPubMedGoogle Scholar
  7. Burkovski A (2013) Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN Microbiol 2013:935736CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burkovski A (2014) Diphtheria and its etiological agents. In: Burkovski A (ed) Corynebacterium diphtheriae and related toxigenic species. Springer, Dordrecht, pp 1–14CrossRefGoogle Scholar
  9. Burkovski A (2016) Pathogenesis of Corynebacterium diphtheriae and Corynebacterium ulcerans. In: Singh SK (ed) Human emerging and re-emerging infections. Wiley/Wiley Blackwell Press, New York, pp 697–708Google Scholar
  10. Carel C, Marcoux J, Réat V, Parra J, Latgé G, Laval F, Demange P, Burlet-Schiltz O, Milon A, Daffé M, Tropis MG, Renault MAM (2017) Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane. Proc Natl Acad Sci USA 114:4231–4236CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chami M, Andréau K, Lemassu A, Petit J-F, Houssin C, Puech V, Bayan N, Chaby R, Daffé M (2002) Priming and activation of mouse macrophages by trehalose 6,6′-dicorynomycolate vesicles from Corynebacterium glutamicum. FEMS Immunol Med Microbiol 32:141–147PubMedGoogle Scholar
  12. Collins MD, Burton RA, Jones D (1988) Corynebacterium amycolatum sp.nov., a new mycolic acid-less Corynebacterium species from human skin. FEMS Microbiol Lett 49:349–352CrossRefGoogle Scholar
  13. Collins MD, Falsen E, Akervall E, Sjöden B, Alvarez A (1998) Corynebacterium kroppenstedtii sp. nov., a novel Corynebacterium that does not contain mycolic acids. Int J Syst Bacteriol 48:1449–1454CrossRefPubMedGoogle Scholar
  14. Daffé M (2005) The cell envelope of corynebacteria. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. Taylor & Francis, Boca Raton, pp 121–148CrossRefGoogle Scholar
  15. Datta AK, Takayama K (1993) Isolation and purification of trehalose 6-mono and 6,6′-di-corynomycolates from Corynebacterium matruchotii. Structural characterization by 1H NMR. Carbohydrate Res. 245:151–158CrossRefGoogle Scholar
  16. De Sousa-D’Auria C, Kacem R, Puech V, Tropis M, Leblon G, Houssin C, Daffé M (2003) New insights into the biogenesis of the cell envelope of corynebacteria: identification and functional characterization of five new mycoloyltransferase genes in Corynebacterium glutamicum. FEMS Microbiol Lett 224:35–44CrossRefPubMedGoogle Scholar
  17. Eggeling L, Gurdyal SB, Alderwick L (2008) Structure and synthesis of the cell wall. In: Burkovski A (ed) Corynebacteria. Caister Academic Press, Norfolk, pp 267–294Google Scholar
  18. Gande R, Gibson KJ, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS, Eggeling L (2004) Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 279:44847–44857CrossRefPubMedGoogle Scholar
  19. Gebhardt H, Meniche X, Tropis M, Kramer R, Daffé M, Morbach S (2007) The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae. Microbiology 153:1424–1434CrossRefPubMedGoogle Scholar
  20. Geisel RE, Sakamoto K, Russell DG, Rhoades ER (2005) In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J Immunol 174:5007–5015CrossRefPubMedGoogle Scholar
  21. Goodfellow M (2012) Class I. Actinobacteria. In: Whitman WB, Goodfellow M, Kämpfer P et al (eds) Bergey‘s manual of systematic bacteriology. Springer, New York, pp 34–35CrossRefGoogle Scholar
  22. Hacker E, Ott L, Schulze-Luehrmann J, Lührmann A, Wiesmann V, Wittenberg T, Burkovski A (2016) The killing of macrophages by Corynebacterium ulcerans. Virulence 7:45–55CrossRefPubMedGoogle Scholar
  23. Hard GC (1975) Comparative toxic effect of the surface lipid of Corynebacterium ovis on peritoneal macrophages. Infect Immun 12:1439–1449PubMedPubMedCentralGoogle Scholar
  24. Huc E, Meniche X, Benz R, Bayan N, Ghazi A, Tropis M, Daffé M (2010) O-mycoloylated proteins from Corynebacterium: an unprecedented post-translational modification in bacteria. J Biol Chem 285:21908–21912CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huc E, de Sousa-D’Auria C, de la Sierra-Gallay IL, Salmeron C, van Tilbeurgh H, Bayan N, Houssin C, Daffé M, Tropis M (2013) Identification of a mycoloyl transferase selectively involved in O-acylation of polypeptides in Corynebacteriales. J Bacteriol 195:4121–4128CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hunter RL, Olsen MR, Jagannath C, Actor JK (2006) Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci 36:371–386PubMedGoogle Scholar
  27. Indrigo J, Hunter RL Jr, Actor JK (2003) Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149:2049–2059CrossRefPubMedGoogle Scholar
  28. Ioneda T, Lenz M, Pudles J (1963) Chemical constitution of a glycolipid from C. diphtheriae P.W.B. Biochem Biophys Res Commun 13:110–114CrossRefGoogle Scholar
  29. Issa H, Huc-Claustre E, Reddad T, Bonadé Bottino N, Tropis M, Houssin C, Daffé M, Bayan N, Dautin N (2017) Click-chemistry approach to study mycoloylated proteins: evidence for PorB and PorC porins mycoloylation in Corynebacterium glutamicum. PLoS ONE 12:e0171955CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lanéelle MA, Tropis M, Daffé M (2013) Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes. Appl Microbiol Biotechnol 97:9923–9930CrossRefPubMedGoogle Scholar
  31. Lang R (2013) Recognition of the mycobacterial cord factor by Mincle: relevance for granuloma formation and resistance to tuberculosis. Front Immunol 4:5CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lee WB, Kang JS, Yan JJ, Lee MS, Jeon BY, Cho SN, Kim YJ (2012) Neutrophils promote mycobacterial trehalose dimycolate-induced lung inflammation via the mincle pathway. PLoS Pathog 8:e1002614CrossRefPubMedPubMedCentralGoogle Scholar
  33. Marrakchi H, Laneelle MA, Daffé M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21:67–85CrossRefPubMedGoogle Scholar
  34. Meniche X, Labarre C, de Sousa-d’Auria C, Huc E, Laval F, Tropis M, Bayan N, Portevin D, Guilhot C, Daffé M, Houssin C (2009) Identification of a stress-induced factor of Corynebacterineae that is involved in the regulation of the outer membrane lipid composition. J Bacteriol 191:7323–7332CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mishra AK, Krumbach K, Rittmann D, Appelmelk B, Pathak V, Pathak AK, Nigou J, Geurtsen J, Eggeling L, Besra GS (2011) Lipoarabinomannan biosynthesis in Corynebacterineae: the interplay of two alpha(1– > 2)-mannopyranosyltransferases MptC and MptD in mannan branching. Mol Microbiol 80:1241–1259CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mishra AK, Krumbach K, Rittmann D, Batt SM, Lee OY, De S, Frunzke J, Besra GS, Eggeling L (2012a) Deletion of manC in Corynebacterium glutamicum results in a phospho-myo-inositol mannoside- and lipoglycan-deficient mutant. Microbiology 158:1908–1917CrossRefPubMedGoogle Scholar
  37. Mishra AK, Alves JE, Krumbach K, Nigou J, Castro AG, Geurtsen J, Eggeling L, Saraiva M, Besra GS (2012b) Differential arabinan capping of lipoarabinomannan modulates innate immune responses and impacts T helper cell differentiation. J Biol Chem 287:44173–44183CrossRefPubMedPubMedCentralGoogle Scholar
  38. Moreira LO, Mattos-Guaraldi AL, Andrade AF (2008) Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol 190:521–530CrossRefPubMedGoogle Scholar
  39. Muckle CA, Gyles CL (1983) Relation of lipid content and exotoxin production to virulence of Corynebacterium pseudotuberculosis in mice. Am J Vet Res 44:1149–1153PubMedGoogle Scholar
  40. Nataraj V, Varela C, Javid A, Singh A, Besra GS, Bhatt A (2015) Mycolic acids: deciphering and targeting the Achilles’ heel of the tubercle bacillus. Mol Microbiol 98:7–16CrossRefPubMedPubMedCentralGoogle Scholar
  41. Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H (2010) Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18:109–116CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nishizawa M, Yamamoto H, Imagawa H, Barbier-Chassefière V, Petit E, Azuma I, Papy-Garcia D (2007) Efficient syntheses of a series of trehalose dimycolate(TDM)/trehalose dicorynomycolate (TDCM) analogues and their interleukin-6 level enhancement activity in mice sera. J Org Chem 72:1627–1633CrossRefPubMedGoogle Scholar
  43. Odhah MN, Abdullah FF, Haron AW, Lila MA, Zamri-Saad M, Khuder Z, Hambali IU, Umar M, Saleh WM (2017) Hemogram responses in goats toward challenged with Corynebacterium pseudotuberculosis and its immunogen mycolic acids. Vet World 10(6):655CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ott L, Hacker E, Kunert T, Karrington I, Etschel P, Lang R, Wiesmann V, Wittenberg T, Singh A, Varela C, Bhatt A, Sangal V, Burkovski A (2017) Analysis of Corynebacterium diphtheriae macrophage interaction: dispensability of corynomycolic acids for inhibition of phagolysosome maturation and identification of a new gene involved in synthesis of the corynomycolic acid layer. PLoS ONE 12:e0180105CrossRefPubMedPubMedCentralGoogle Scholar
  45. Peixoto RS, Pereira GA, Sanches dos Santos L, Rocha-de-Souza CM, Gomes DL, Silva Dos Santos C, Werneck LM, Dias AA, Hirata R Jr, Nagao PE, Mattos-Guaraldi AL (2014) Invasion of endothelial cells and arthritogenic potential of endocarditis-associated Corynebacterium diphtheriae. Microbiology 160:537–546CrossRefPubMedGoogle Scholar
  46. Peixoto RS, Azevedo Antunes C, Simpson Louredo L, Goncalves Viana V, Silva dos Santos C, Ribeiro da Silva JF, Hirata R Jr, Hacker E, Mattos-Guaraldi AL, Burkovski A (2017) Functional characterization of the putative adhesin DIP2093 and its influence on the arthritogenic potential of Corynebacterium diphtheriae. Microbiology 163:692–701CrossRefPubMedGoogle Scholar
  47. Puech V, Chami M, Lemassu A, Lanéelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffé M (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382CrossRefPubMedGoogle Scholar
  48. Puliti M, von Hunolstein C, Marangi M, Bistoni F, Tissi L (2006) Experimental model of infection with non-toxigenic strains of Corynebacterium diphtheriae and development of septic arthritis. J Med Microbiol 55:229–235CrossRefPubMedGoogle Scholar
  49. Radmacher E, Alderwick LJ, Besra GS, Brown AK, Gibson KJ, Sahm H, Eggeling L (2005) Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. Microbiology 151:2421–2427CrossRefPubMedGoogle Scholar
  50. Rao V, Fujiwara N, Porcelli SA, Glickman MS (2005) Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201:535543CrossRefGoogle Scholar
  51. Rath P, Demange P, Saurel O, Tropis M, Daffé M, Dötsch V, Ghazi A, Bernhard F, Milon A (2011) Functional expression of the PorAH channel from Corynebacterium glutamicum in a cell-free expression system: implications for the role of the naturally occurring mycolic acid modification. J Biol Chem 286:32525–32532CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rath P, Saurel O, Tropis M, Daffé M, Demange P, Milon A (2013) NMR localization of the O-mycoloylation on PorH, a channel forming peptide from Corynebacterium glutamicum. FEBS Lett 587:3687–3691CrossRefPubMedGoogle Scholar
  53. Reed M, Domenech P, Manca C, Su H, Barczak AK, Kreiswirt BN, Kaplan G, Barry CE III (2004) A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:84–87CrossRefPubMedGoogle Scholar
  54. Riegel P, Liégeois P, Chenard MP, Mathelin C, Monteil H (2004) Isolation of Corynebacterium kroppenstedtii from a breast abcess. Int J Med Microbiol 294:413–416CrossRefPubMedGoogle Scholar
  55. Sangal V, Hoskisson PA (2016) Evolution, epidemiology and diversity of Corynebacterium diphtheriae: new perspectives on an old foe. Infect Gen Evol 43:364–370CrossRefGoogle Scholar
  56. Sangal V, Burkovski A, Hunt AC, Edwards B, Blom J, Hoskisson PA (2014) A lack of genetic basis for biovar differentiation in clinically important Corynebacterium diphtheriae from whole genome sequencing. Infect Genet Evol 21:54–57CrossRefPubMedGoogle Scholar
  57. Schick J, Etschel P, Bailo R, Ott L, Bhatt A, Lepenies B, Kirschning C, Burkovski A, Lang R (2017) Toll-like receptor 2 and mincle cooperatively sense corynebacterial cell wall glycolipids. Infect Immun 85:e00075-17CrossRefPubMedPubMedCentralGoogle Scholar
  58. Senn M, Ioneda T, Pudles J, Lederer E (1967) Spectrométrie de masse de glycolipids. Structure du „cord factor“de Corynebacterium diphtheriae. Eur J Biochem 1:353–356CrossRefPubMedGoogle Scholar
  59. Shenderov K, Barber DL, Mayer-Barber KD, Gurcha SS, Jankovic D, Feng CG, Oland S, Hieny S, Caspar P, Yamasaki S, Lin X, Ting JP, Trinchieri G, Besra GS, Cerundolo V, Sher A (2013) Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome. J Immunol 190:5722–5730CrossRefPubMedPubMedCentralGoogle Scholar
  60. Shui G, Bendt AK, Jappar IA, Lim HM, Lanéelle M, Hervé M, Via LE, Chua GH, Bratschi MW, Rahim SZZ, Michelle ALT, Hwang S-H, Lee J-S, Eum S-Y, Kwak H-K, Daffé M, Dartois V, Michel G, Barry CE III, Wenk MR (2012) Mycolic acids as diagnostic markers for tuberculosis case detection in humans and drug efficacy in mice. EMBO Mol Med 4:27–37CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sydor T, von Bargen K, Hsu FF, Huth G, Holst O, Wohlmann J, Becken U, Dykstra T, Söhl K, Lindner B, Prescott JF, Schaible UE, Utermöhlen O, Haas A (2013) Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length. Cell Microbiol 15:458–473CrossRefPubMedGoogle Scholar
  62. Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101CrossRefPubMedPubMedCentralGoogle Scholar
  63. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11:443–451CrossRefPubMedGoogle Scholar
  64. Tauch A, Burkovski A (2015) Molecular armory or niche factors: virulence determinants of Corynebacterium species. FEMS Microbiol Lett 362:1–6Google Scholar
  65. Tauch A, Sandbote J (2014) The family Corynebacteriaceae. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes, Actinobacteria, 4th edn. Springer, Berlin, pp 239–277Google Scholar
  66. Tauch A, Schneider J, Szczepanowski R, Tilker A, Viehoever P, Gartemann KH, Arnold W, Blom J, Brinkrolf K, Brune I, Götker S, Weisshaar B, Goesmann A, Dröge M, Pühler A (2008) Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic corynebacterium that lacks mycolic acids. J Biotechnol 136:22–30CrossRefPubMedGoogle Scholar
  67. Tropis M, Meniche X, Wolf A, Gebhardt H, Strelkov S, Chami M, Schomburg D, Krämer R, Morbach S, Daffé M (2005) The crucial role of trehalose and structurally related oligosaccharides in the biosynthesis and transfer of mycolic acids in Corynebacterineae. J Biol Chem 280:26573–26585CrossRefPubMedGoogle Scholar
  68. van der Peet PL, Gunawan C, Torigoe S, Yamasaki S, Williams SJ (2015) Corynomycolic acid-containing glycolipids signal through the pattern recognition receptor Mincle. Chem Commun 51:5100–5103CrossRefGoogle Scholar
  69. Vander Beken S, Al Dulayymi JR, Naessens T, Koza G, Maza-Iglesias M, Rowles R, Theunissen C, De Medts J, Lanckacker E, Baird MS, Grooten J (2011) Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur J Immunol 41:450–460CrossRefPubMedGoogle Scholar
  70. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yamaryo-Botte Y, Rainczuk AK, Lea-Smith DJ, Brammananth R, van der Peet P, Meikle P, Ralton JE, Rupasinghe TWT, Williams SJ, Coppel RL, Crellin PK, McConville MJ (2014) Acetylation of trehalose mycolates is required for efficient MmpL-mediated membrane transport in Corynebacterinae. ASC Chem Biol 10:734–746Google Scholar
  72. Yang Y, Shi F, Tao G, Wang X (2012) Purification and structure analysis of mycolic acids in Corynebacterium glutamicum. J Microbiol 50:235–240CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations