Antonie van Leeuwenhoek

, Volume 111, Issue 7, pp 1087–1093 | Cite as

Glycomyces tritici sp. nov., isolated from rhizosphere soil of wheat (Triticum aestivum L.) and emended description of the genus Glycomyces

  • Wenchao Li
  • Chongxi Liu
  • Xiaowei Guo
  • Wei Song
  • Tianyu Sun
  • Liping Duan
  • Xiangjing Wang
  • Junwei Zhao
  • Wensheng Xiang
Original Paper


A novel actinomycete strain, designated NEAU-C2T, was isolated from rhizosphere soil of wheat (Triticum aestivum L.), and subjected to a polyphasic taxonomic study. Morphological and chemotaxonomic properties of this strain were consistent with the description of the genus Glycomyces. Growth was found to occur at a temperature range of 15–40 °C, pH 6–10 and NaCl concentrations of 0–4%. The cell wall was found to contain meso-diaminopimelic acid and the whole cell sugars were identified as galactose, xylose and ribose. The predominant menaquinones were identified as MK-10(H6) and MK-10(H2). The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol, phosphoglycolipids and an unidentified glycolipid. The major fatty acids were identified as anteiso-C15:0, iso-C16:0, anteiso-C17:0 and iso-C15:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-C2T belongs to the genus Glycomyces with high sequence similarity to Glycomyces algeriensis NRRL B-16327T (99.0% sequence similarity). Some physiological and biochemical properties and low DNA–DNA relatedness values enabled the strain to be differentiated from closely related species of the genus Glycomyces. It is concluded that the isolate can be classified as representing a novel species of the genus Glycomyces, for which the name Glycomyces tritici is proposed. The type strain is NEAU-C2T (= DSM 104644T = CGMCC 4.7410T).


Glycomyces tritici sp. nov. Polyphasic taxonomic study 16S rRNA gene 



This work was supported in part by Grants from the National Key Research and Development Plan (No. 2017YFD0201606), Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Supplementary material

10482_2017_1011_MOESM1_ESM.docx (1009 kb)
Supplementary material 1 (DOCX 1008 kb)


  1. Collins MD (1985) Chemical Methods in Bacterial Systematics. In: Goodfellow M, Minnikin DE (eds) Isoprenoid quinone analyses in bacterial classification and identification. Academic Press, London, pp 267–284Google Scholar
  2. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  3. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  4. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  5. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315CrossRefPubMedGoogle Scholar
  6. Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  7. Guan TW, Wang PH, Tian L, Tang SK, Xiang HP (2016) Glycomyces lacisalsi sp. nov., an actinomycete isolated from a hypersaline habitat. Int J Syst Evol Microbiol 66(12):5366–5370CrossRefPubMedGoogle Scholar
  8. Han XX, Luo XX, Zhang LL (2014) Glycomyces fuscus sp. nov. and Glycomyces albus sp. nov. actinomycetes isolated from a hypersaline habitat. Int J Syst Evol Microbiol 64(7):2437–2441CrossRefPubMedGoogle Scholar
  9. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  10. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192CrossRefPubMedGoogle Scholar
  11. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145PubMedPubMedCentralGoogle Scholar
  12. Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US Government Printing Office, WashingtonGoogle Scholar
  13. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036CrossRefPubMedGoogle Scholar
  14. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  15. Labeda DP, Kroppenstedt RM (2004) Emended description of the genus Glycomyces and description of Glycomyces algeriensis sp. nov., Glycomyces arizonensis sp. nov. and Glycomyces lechevalierae sp. nov. Int J Syst Evol Microbiol 54:2343–2346CrossRefPubMedGoogle Scholar
  16. Labeda DP, Testa RT, Lechevalier MP, Lechevalier HA (1985) Glycomyces, a new genus of the Actinomycetales. Int J Syst Bacteriol 35:417–421CrossRefGoogle Scholar
  17. Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B, Vanncanneyt M, Swings J, Kim SB, Liu Z (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101:73–104CrossRefPubMedGoogle Scholar
  18. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  19. Lee MD, Fantini AA, Kuck NA, Greestein M, Testa RT, Borders DB (1987) New antitumor antibiotic, LL-DO5139/β fermentation, isolation structure determination and biological activity. J Anti-biot 40:1657–1663CrossRefGoogle Scholar
  20. Lv LL, Zhang YF, Zhang LL (2015) Glycomyces tarimensis sp. nov. a novel actinomycete isolated from a saline-alkali habitat. Int J Syst Evol Microbiol 65(5):1587CrossRefPubMedGoogle Scholar
  21. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12:195–206CrossRefGoogle Scholar
  22. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Se-viour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182CrossRefPubMedGoogle Scholar
  23. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233CrossRefGoogle Scholar
  24. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  25. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110(4):455–456CrossRefPubMedGoogle Scholar
  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  27. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  28. Smibert RM, Krieg NR (1994) Phenotypic characterisation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654Google Scholar
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.06. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  30. Urzì C, De Leo F, Schumann P (2008) Kribbellacata cumbaesp. nov. and Kribbella sancticallisti sp. nov., isolated from whitish-grey patinas in the catacombs of St. Callistus in Rome Italy. Int J Syst Evol Microbiol 58:2090–2097CrossRefPubMedGoogle Scholar
  31. Waksman SA (1961) The Actinomycetes, classification, identification and descriptions of genera and species, vol 2. Williams and Wilkins, BaltimoreGoogle Scholar
  32. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  33. Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2452–2492Google Scholar
  34. Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178 [English translation of Microbiology (Beijing)] Google Scholar
  35. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169CrossRefPubMedGoogle Scholar
  36. Xie QY, Lin HP, Li L, Brown R, Goodfellow M, Deng Z, Hong K (2012) Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 102:1–7CrossRefPubMedGoogle Scholar
  37. Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar
  38. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhang X, Ren K, Du J, Liu H, Zhang L (2014) Glycomyces artemisiae sp. nov. an endophytic actinomycete isolated from the roots of artemisia argyi. Int J Syst Evol Microbiol 64(10):3492CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Wenchao Li
    • 1
  • Chongxi Liu
    • 1
  • Xiaowei Guo
    • 1
  • Wei Song
    • 1
  • Tianyu Sun
    • 1
  • Liping Duan
    • 1
  • Xiangjing Wang
    • 1
  • Junwei Zhao
    • 1
  • Wensheng Xiang
    • 1
    • 2
  1. 1.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations