Skip to main content
Log in

Glycomyces tritici sp. nov., isolated from rhizosphere soil of wheat (Triticum aestivum L.) and emended description of the genus Glycomyces

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel actinomycete strain, designated NEAU-C2T, was isolated from rhizosphere soil of wheat (Triticum aestivum L.), and subjected to a polyphasic taxonomic study. Morphological and chemotaxonomic properties of this strain were consistent with the description of the genus Glycomyces. Growth was found to occur at a temperature range of 15–40 °C, pH 6–10 and NaCl concentrations of 0–4%. The cell wall was found to contain meso-diaminopimelic acid and the whole cell sugars were identified as galactose, xylose and ribose. The predominant menaquinones were identified as MK-10(H6) and MK-10(H2). The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol, phosphoglycolipids and an unidentified glycolipid. The major fatty acids were identified as anteiso-C15:0, iso-C16:0, anteiso-C17:0 and iso-C15:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-C2T belongs to the genus Glycomyces with high sequence similarity to Glycomyces algeriensis NRRL B-16327T (99.0% sequence similarity). Some physiological and biochemical properties and low DNA–DNA relatedness values enabled the strain to be differentiated from closely related species of the genus Glycomyces. It is concluded that the isolate can be classified as representing a novel species of the genus Glycomyces, for which the name Glycomyces tritici is proposed. The type strain is NEAU-C2T (= DSM 104644T = CGMCC 4.7410T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Collins MD (1985) Chemical Methods in Bacterial Systematics. In: Goodfellow M, Minnikin DE (eds) Isoprenoid quinone analyses in bacterial classification and identification. Academic Press, London, pp 267–284

    Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315

    Article  PubMed  CAS  Google Scholar 

  • Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63

    Article  Google Scholar 

  • Guan TW, Wang PH, Tian L, Tang SK, Xiang HP (2016) Glycomyces lacisalsi sp. nov., an actinomycete isolated from a hypersaline habitat. Int J Syst Evol Microbiol 66(12):5366–5370

    Article  PubMed  Google Scholar 

  • Han XX, Luo XX, Zhang LL (2014) Glycomyces fuscus sp. nov. and Glycomyces albus sp. nov. actinomycetes isolated from a hypersaline habitat. Int J Syst Evol Microbiol 64(7):2437–2441

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  PubMed  CAS  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US Government Printing Office, Washington

    Google Scholar 

  • Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Labeda DP, Kroppenstedt RM (2004) Emended description of the genus Glycomyces and description of Glycomyces algeriensis sp. nov., Glycomyces arizonensis sp. nov. and Glycomyces lechevalierae sp. nov. Int J Syst Evol Microbiol 54:2343–2346

    Article  PubMed  Google Scholar 

  • Labeda DP, Testa RT, Lechevalier MP, Lechevalier HA (1985) Glycomyces, a new genus of the Actinomycetales. Int J Syst Bacteriol 35:417–421

    Article  CAS  Google Scholar 

  • Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B, Vanncanneyt M, Swings J, Kim SB, Liu Z (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101:73–104

    Article  PubMed  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291

    Google Scholar 

  • Lee MD, Fantini AA, Kuck NA, Greestein M, Testa RT, Borders DB (1987) New antitumor antibiotic, LL-DO5139/β fermentation, isolation structure determination and biological activity. J Anti-biot 40:1657–1663

    Article  CAS  Google Scholar 

  • Lv LL, Zhang YF, Zhang LL (2015) Glycomyces tarimensis sp. nov. a novel actinomycete isolated from a saline-alkali habitat. Int J Syst Evol Microbiol 65(5):1587

    Article  PubMed  CAS  Google Scholar 

  • Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12:195–206

    Article  CAS  Google Scholar 

  • McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Se-viour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182

    Article  PubMed  CAS  Google Scholar 

  • Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110(4):455–456

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterisation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.06. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urzì C, De Leo F, Schumann P (2008) Kribbellacata cumbaesp. nov. and Kribbella sancticallisti sp. nov., isolated from whitish-grey patinas in the catacombs of St. Callistus in Rome Italy. Int J Syst Evol Microbiol 58:2090–2097

    Article  PubMed  CAS  Google Scholar 

  • Waksman SA (1961) The Actinomycetes, classification, identification and descriptions of genera and species, vol 2. Williams and Wilkins, Baltimore

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2452–2492

    Google Scholar 

  • Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178 [English translation of Microbiology (Beijing)]

    CAS  Google Scholar 

  • Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169

    Article  PubMed  CAS  Google Scholar 

  • Xie QY, Lin HP, Li L, Brown R, Goodfellow M, Deng Z, Hong K (2012) Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 102:1–7

    Article  PubMed  Google Scholar 

  • Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812

    Article  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ren K, Du J, Liu H, Zhang L (2014) Glycomyces artemisiae sp. nov. an endophytic actinomycete isolated from the roots of artemisia argyi. Int J Syst Evol Microbiol 64(10):3492

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants from the National Key Research and Development Plan (No. 2017YFD0201606), Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junwei Zhao or Wensheng Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1008 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liu, C., Guo, X. et al. Glycomyces tritici sp. nov., isolated from rhizosphere soil of wheat (Triticum aestivum L.) and emended description of the genus Glycomyces. Antonie van Leeuwenhoek 111, 1087–1093 (2018). https://doi.org/10.1007/s10482-017-1011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-1011-7

Keywords

Navigation