Skip to main content

Mixed cropping regimes promote the soil fungal community under zero tillage

Abstract

Fungi of yield soils represent a significant portion of the microbial biomass and reflect sensitivity to changes in the ecosystem. Our hypothesis was that crops included in cropping regimes under the zero tillage system modify the structure of the soil fungi community. Conventional and molecular techniques provide complementary information for the analysis of diversity of fungal species and successful information to accept our hypothesis. The composition of the fungal community varied according to different crops included in the cropping regimes. However, we detected other factors as sources of variation among them, season and sampling depth. The mixed cropping regimes including perennial pastures and one crop per year promote fungal diversity and species with potential benefit to soil and crop. The winter season and 0–5 cm depth gave the largest evenness and fungal diversity. Trichoderma aureoviride and Rhizopus stolonifer could be used for monitoring changes in soil under zero tillage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson IC, Collin C, Prosser JL (2003) Potencial bies of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primer for estimating fungal biodiversity in soil. Environ Microbiol 5:36–47

    Article  PubMed  CAS  Google Scholar 

  2. Aon MA, Cabello MN, Serena DE, Colaneri AC, Franco MG, Burgos JL, Cortassa SI (2001) I Spatio-temporal patterns of soil microbial and enzymatic acivities in an agricultural soil. Appl Soil Ecol 18:239–254

    Article  Google Scholar 

  3. Barbaruah B, Chutia M, Boruah P (2012) Soil hyphomycetes population dynamics in disturbed and undisturbed tropical soils of North eastern India. Afr J Microbiol Res 6:5344–5352

    Article  Google Scholar 

  4. Bassam B, Caetano-Anolles G, Gresshoff P (1991) Fast and sensitive silver staining of DNA in polyacrilamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  5. Cabello M, Aon M, Velázquez S (2003) Diversity, structure and evolution of fungal communities in soils under different agricultural management practices. Bol Soc Argent Bot 38:225–232

    Google Scholar 

  6. Cabello M, Arambarri AM (2002) Diversity in soil fungi from undisturbed and disturbed Celtis tala and Scutia buxifolia forests in the eastern Buenos Aires province (Argentina). Microbiol Res 157:115–125

    Article  PubMed  Google Scholar 

  7. Carmichael JW, Bryce Kendrick W, Conners IL, Sigler L (1980) Genera of Hyphomycetes. The University of Alberta, Edmonton, Alberta

    Google Scholar 

  8. Derpsch R, Friedrich T, Kassam A, Li Hongwen L (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–26

    Google Scholar 

  9. Domínguez GF, Diovisalvi GA, Studdert GA, Monterubbianesi MG (2009) Soil organic C and N fractions under continuous cropping with contrasting tillage systems on mollisols of the southeastern pampas. Soil Tillage Res. 102:93–100

    Article  Google Scholar 

  10. Domsch KH, Gams W, Anderson TH (1980) Compendium of soil Fungi, vol 1. Academic Press, London

    Google Scholar 

  11. Dufrené MY, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical. Approach Ecol Monogr 67:345–366

    Google Scholar 

  12. Ellis MB (1971) Dematiaceous, Hyphomycetes edn. Commonwealth Mycological Institute, Kew, Surrey, England

    Google Scholar 

  13. Esmaelli Ellouze WL, Taheri A, Bainard LD, Yang CH, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel CH (2014) Soil fungal resources in annual cropping systems and their potential for management. BioMed Res Int. https://doi.org/10.1155/2014/531824

    Article  Google Scholar 

  14. Fracetto GGM, Azevedo LCB, Fracetto FJC, Andreote FD, Lambais MR, Pfenning LH (2013) Impact of Amazon land use on the community of soil fungi. Sci Agric 70:59–67

    Article  Google Scholar 

  15. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basiodiomycetes-aplication to the identification of mycorrhizae and rust. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  16. González-Chávez MC, Aitkenhead-Peterson JA, Gentry TJ, Zuberer D, Hons F, Loeppert R (2010) Soil microbial community, C, N and P responses to long-term tillage and crop rotation. Soil Tillage Res 106:285–293

    Article  Google Scholar 

  17. Granzow S, Kaiser K, Wemheuer B, Pfeiffer B, Daniel R, Vidal S, Wemheuer F (2017) The Effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front Microbiol 902:1–22

    Google Scholar 

  18. Hagn A, Karin Pritsch, Schloter J, Munch JC (2003) Fungal diversity in agricultural soil under different farming managment systems, with special reference to biocontrol strains of Trichodermaspp. Biol Fertil Soils 30:236–244

    Article  CAS  Google Scholar 

  19. Jost L (2006) Entropy and diversity. Opinion. Oikos 113:363–375

    Article  Google Scholar 

  20. Kaisermann A, Maron PA, Beaumelle L, Lata JC (2015) Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl Soil Ecol 86:158–164

    Article  Google Scholar 

  21. Kubicek CH, Harman GE (2002) Trichoderma & Gliocladium. Volume 1. Basic biology, taxonomy and genetics. Taylor & Francis, Washinton, DC

    Google Scholar 

  22. Larena I, Sabuquillo P, Melgarejo P, De Cal A (2003) Biocontrol of fusarium and verticillium wilt of tomato by Penicillium oxalicum. J. Phytophatol 151:507–512

    Article  Google Scholar 

  23. LeBlanc N, Kinkel LL, Kistler HC (2015) Soil fungal communities respond to grasslan plant communityrichness and soil edaphics. Microbial Ecol 70:188–195

    Article  CAS  Google Scholar 

  24. Lenth RV (2013) lsmeans: Least-squares means. R package version 1.10-2. http://CRAN.R-project.org/package=lsmeans.

  25. Leslie JF, Summerell BA (2006) The Fusarium Laboratory Manual, 1st edn. Blackwell, Oxford, UK

    Book  Google Scholar 

  26. Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem 30:1733–1741

    Article  CAS  Google Scholar 

  27. Magurran AE, McGill BJ (2011) Biological diversity. Frontiers in measurement and assessment. Oxford University, Oxford

    Google Scholar 

  28. Mamgain A, Roychowdhury R, Tah J (2013) Alternaria pathogenicity and its strategic controls. Res J Biol 1:2–9

    Google Scholar 

  29. Manamgoda DS, Cai L, Bahkali HA, Chukeatirote E, Hyde K (2011) Cochliobolus: an overview and current status of species. Fungal Divers 51:3–42

    Article  Google Scholar 

  30. Manshor N, Rosli H, Ismail NA, Salleh B, Zakaria L (2012) Diversity of Fusarium Species from Highland Areas in Malaysia. Trop Life Sci Res 23:1–15

    PubMed  PubMed Central  Google Scholar 

  31. Marasas WFO, Burgess LW, Anelich RY, Lamprecht SC, Van Schalkwyk DJ (1988) Survey of Fusarium species associated with plant debris in South African soils. S Afr J Bot 54:63–71

    Article  Google Scholar 

  32. McCune B, Meffors MJ (1999) Multivariate analysis of ecologial data. version 4.0. MjM Software Design, Gleneden Beach

    Google Scholar 

  33. Meriles JM, Vargas Gil S, Conforto C, Figoni G, Lovera E, March GJ, Guzmán CA (2009) Soil microbial communities under different soybean cropping systems: characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Tillage Res 103:271–281

    Article  Google Scholar 

  34. Molnár O, Wuczkowski M, Prillinger H (2008) Yeast biodiversity in the guts of several pests on maize; comparison of three methods: classical isolation, cloning and DGGE. Mycol Prog 7:111–123

    Article  Google Scholar 

  35. Pinheiro J, Bates D, DebRoy S, Sarkar D (2013) The R development core team. nlme: linear and nonlinear mixed effects models. R package version 3, 1–108

  36. Quesada-Moraga E, Navas-Corte JA, Maranhao EAA, Ortiz-Urquiza A, Santiago-Alvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111:947–966

    Article  PubMed  Google Scholar 

  37. Ramakrishnai N, Lacey J, Smitw JE (1993) Effects of water activity and temperature on the growth of fungi interacting on barley grain. Mycol Res 97:1393–1402

    Article  Google Scholar 

  38. Raper KB, Fennel D (1965) The genus Aspergillus. The Williams & Wilkins company, Philadelphia

    Google Scholar 

  39. Raper T, Thom Ch (1968) A manual of the Penicillia. Hafner Publishing Company, New York and London

    Google Scholar 

  40. Rohlf FI (1998) Ntsys-pc. Numerical taxonomy and multivariate analysis system, version 2.0. Applied biostatistics. Exeter Software, New York

  41. Sahni N, Phutela UG (2013) Effect of thermophilic fungus Humicola fuscoatra MTCC 1409 on paddy straw digestibility and biogas production. Microbiology 2:357–359

    Google Scholar 

  42. Samson RA, Frisvad JC (2004) Penicillium subgenus Penicillium: new taxonomic schemes and mycotoxins and other extrolites. Studies in Mycology, vol 49. Ceentraal Bureau Voor Schimmelcultures, Utrecht, The Netherlands, pp 1–251

    Google Scholar 

  43. Setälä H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecología 139:98–107

    Article  PubMed  Google Scholar 

  44. Sigler WV, Turco RF (2002) The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Appl Soil Ecol 21:107–118

    Article  Google Scholar 

  45. Silvestro LB, Biganzoli F, Forjan H, Albanesi A, Arambarri AM, Manso L, Moreno MV (2017) Mollisol: Biological Characterization under Zero Tillage with Different Crops Sequences. J Agr Sci Tech 19:245–257

    Google Scholar 

  46. Silvestro LB, Stenglein SA, Forjan H, Dinolfo MI, Arambarri AM, Manso L, Moreno MV (2013) Occurrence and distribution of soil Fusarium species under wheat crop in zero tillage. Span J Agric. Res 11:72–79

    Article  Google Scholar 

  47. Smith E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ. Microb 65:2614–2621

    Google Scholar 

  48. Sneath PH, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  49. Soil Survey Staff (SSS) ((2014) Keys to soil taxonomy, vol 12th edn. United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  50. USDA (2006) The U.S. Department of Agriculture: Keys to soil taxonomy, 10th edn. EEUU

  51. Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K, Meijer M, Amend AS, Seifert KA, Samson RA (2014a) Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol 78:63–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014b) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

  54. Wiedow D, Baum Ch, Leinweber P (2007) Inoculation with Trichoderma saturnisporum accelerates wheat straw decomposition on soil. Arch Agron Soil Sci 53:1–12

    Article  CAS  Google Scholar 

  55. Yassin MA, El-Samawaty AR, Bahkali A, Moslem M, Abd-Elsalam KA, Hyde KD (2010) Mycotoxin-producing fungi occurring in sorghum grains from Saudi Arabia. Fungal Divers 44:45–52

    Article  Google Scholar 

  56. Zuur AF, Leno EN, Walker NJ, Saveliev AA, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank Prof. M. Oyarzabal for English assistance. This work was supported by funding from the PIP -CONICET 2014-2016 COD: 112-20130100280 and by the Individual Postdoctoral scholarship of CONICET.

Author information

Affiliations

Authors

Contributions

LB Silvestro designed and performed the experiments, analysed and interpreted the data, and wrote the manuscript. F Biganzoli analysed and interpreted the data and wrote the manuscript. Stenglein SA, H Forjan and L Manso supplied material and wrote the manuscript. MV Moreno designed the experiments, interpreted the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to M. V. Moreno.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Additional information

This manuscript is in memoriam of Dra. Arambarri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silvestro, L.B., Biganzoli, F., Stenglein, S.A. et al. Mixed cropping regimes promote the soil fungal community under zero tillage. Antonie van Leeuwenhoek 111, 1055–1064 (2018). https://doi.org/10.1007/s10482-017-1005-5

Download citation

Keywords

  • Soil
  • Cropping regime
  • Diversity
  • Fungi
  • DGGE