Abstract
Studies on termite symbiosis have revealed that significant symbiont lineages are maintained across generations. However, most studies have focused only on the worker caste. Little is known about the gut microbiota of reproductives, the most probable vectors for transmitting these lineages to offspring. Using 16S rRNA gene-based Illumina MiSeq sequencing, we compared the gut microbiota of swarming alates of the higher termite Nasutitermes arborum with those of their nestmates from the parental colony. The OTU-based alpha diversity indices showed that the gut microbiota of the alates was at least as diverse as those of non-reproductive adults. It was largely dominated by Spirochaetes mostly of the Treponema I cluster (63.1% of reads), the same dominant taxa found in soldiers and workers of this species and in workers of closely related Nasutitermes species. The termite-specific lineages also included other representative taxa such as several clusters of Bacteroidetes and Fibrobacteres-TG3 group. The microbiota of alates was dominated by a core set of host-specific lineages (87% of reads, 77.6% of OTUs), which were always present across all castes/stages. This first comprehensive survey of the microbiota of the founding reproductives of these xylophagous higher termites shows that the bulk of the host endogenous symbionts, mostly taxa that cannot thrive outside the gut, are brought from the parent colony. The royal pair therefore seems to be a key player in the transmission of symbionts across generations and thereby in host-symbiont codiversification. The high proportion of fiber-degrading lineages in their gut suggests a wood-rich diet unlike the larval stages.
This is a preview of subscription content, access via your institution.





References
Abdul Rahman N, Parks DH, Willner DL et al (2015) A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:1–16
Abdul Rahman N, Parks DH, Vanwonterghem I, Morrison M, Tyson GW, Hugenholtz P (2016) A phylogenomic analysis of the bacterial phylum fibrobacteres. Front Microbiol 6:1469
Ackerman IL, Teixeira WG, Riha SJ, Lehmann J, Fernandes ECM (2007) The impact of mound-building termites on surface soil properties in a secondary forest of Central Amazonia. Appl Soil Ecol 37:267–276
Adam RA, Mitchell JD (2009) Energetics and development of incipient colonies of the harvester termite Trinervitermes trinervoides (Sjöstedt) (Termitidae Nasutitermitinae). Insect Soc 56:21–27
Alibert J (1963) Échanges trophallactiques chez un termite supérieur. Contamination par le phosphore radioactif de la population d’un nid de Cubitermes fungifaber. Insect Soc 10:1–12
Anklin-Mühlemann R, Bignell DE, Veivers PC, Leuthold RH, Slaytor M (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhvalinus. J Insect Physiol 41:929–940
Antonovics J, Wilson AJ, Forbes MR et al (2017) The evolution of transmission mode. Philos Trans R Soc B 372. 10.1098/rstb.2016.0083
Benjamino J, Graf J (2016) Characterization of the core and caste-specific microbiota in the termite Reticulitermes flavipes. Front Microbiol 7:171
Berlanga M (2015) Functional symbiosis and communication in microbial ecosystems. The case of woodeating termites and cockroaches. Int Microbiol 18:159–169
Boucias DG, Cai Y, Sun Y, Lietze VU, Sen R, Raychoudhury R, Scharf ME (2013) The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol 22:1836–1853
Boulogne I, Constantino R, Amusant N, Falkowski M, Rodrigues AMS, Houël E (2017) Ecology of termites from the genus Nasutitermes (Termitidae: Nasutitermitinae) and potential for science-based development of sustainable pest management programs. J Pest Sci 90:19–37
Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180
Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166
Dietrich C, Köhler T, Brune A (2014) The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol 80:2261–2269
Diouf M, Roy V, Mora P et al (2015) Profiling the succession of bacterial communities throughout the life stages of a higher termite Nasutitermes arborum (Termitidae Nasutitermitinae) using 16S rRNA gene pyrosequencing. PLoS ONE 10:e0140014
Ebert D (2013) The epidemiology and evolution of symbionts with mixed-mode transmission. Annu Rev Ecol Evol Syst 44:623–643
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200
Estes AM, Hearn DJ, Snell-Rood EC et al (2013) Brood ball-mediated transmission of microbiome members in the dung beetle Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS ONE 8:e79061
Evans TA, Dawes TZ, Ward PR, Lo N (2011) Ants and termites increase crop yield in a dry climate. Nat Commun 2:262
Fall S, Nazaret S, Chotte JL, Brauman A (2004) Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds. Microb Ecol 48:191–199
Fall S, Hamelin J, Ndiaye F, Assigbetse K, Aragno M, Chotte JL, Brauman A (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73:5199–5208
Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890
Fujita A, Minamoto T, Shimizu I, Abe T (2002) Molecular cloning of lysozyme-encoding cDNAs expressed in the salivary gland of a wood-feeding termite Reticulitermes speratus. Insect Biochem Mol 32:1615–1624
Fujita A, Miura T, Matsumoto T (2008) differences in cellulose digestive systems among castes in two termite lineages. Physiol Entomol 33:73–82
Gihring TM, Green SJ, Schadt CW (2012) Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ Microbiol 14:285–290
Grassé P-P (1982) Les aliments élaborés et la trophallaxie. In: Gassé PP (ed) Termitologia: Anatomie physiologie et reproduction des termites. Masson, Paris
He S, Ivanova N, Kirton E et al (2013) Comparative metagenomics and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS ONE 8:e61126
Hogan M, Veivers PC, Slaytor M, Czolij RT (1988) The site of cellulose breakdown in higher termites (Nasutitermes walkeri and Nasutitermes exitiosus). J Insect Physiol 34:891–899
Hongoh Y, Deevong P, Inoue T et al (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599
Hongoh Y, Ekpornprasit L, Inoue T et al (2006a) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516
Hongoh Y, Deevong P, Hattori S et al (2006b) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72:6780–6788
Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4:e337
Huang QY, Wang WP, Mo RY, Lei CL (2008) Studies on feeding and trophallaxis in the subterranean termite Odontotermes formosanus using rubidium chloride. Entomol Exp Appl 129:210–215
Jones JA (1990) Termites soil fertility and carbon cycling in dry tropical Africa: a hypothesis. J Trop Ecol 6:291–305
Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol 47:215–222
Kaiwa N, Hosokawa T, Nikoh N et al (2014) Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr Biol 24:2465–2470
Kikuchi Y, Hosokawa T, Nikoh N, Meng XY, Kamagata Y, Fukatsu T (2009) Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 7:2
Köhler T, Dietrich C, Scheffrahn RH, Brune A (2014) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701
König H, Li L, Fröhlich J (2013) The cellulolytic system of the termite gut. Appl Microbiol Biot 97:7943–7962
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874
Lefebvre T, Miambi E, Pando A, Diouf M, Rouland-Lefèvre C (2009) Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insect Soc 56:269–276
Li H, Dietrich C, Zhu N et al (2015) Age polyethism drives community structure of the bacterial gut microbiota in the fungus-cultivating termite Odontotermes formosanus. Environ Microbiol 18:1440–1451
Lima VLDS, Bailez OE, Viana-Bailez AM (2013) Caste polymorphism of apterous line of the Neotropical termite Nasutitermes corniger (Motschulsky) (Isoptera Termitidae). Rev Bras Entomol 57:309–312
Liu N, Zhang L, Zhou H et al (2013) Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite Odontotermes yunnanensis. PLoS ONE 8:e69184
Mikaelyan A, Strassert JFH, Tokuda G et al (2014) The fibre-associated cellulolytic bacterial community in the hindgut of wood feeding higher termites (Nasutitermes spp.). Environ Microbiol 16:2711–2722
Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A (2015a) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24:5284–5295
Mikaelyan A, Köhler T, Lampert N, Rohland J, Boga H, Meuser M, Brune A (2015b) Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb). Syst Appl Microbiol 38:472–482
Mikaelyan A, Meuser K, Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol 93. 10.1093/femsec/fiw210
Miyata R, Noda N, Tamaki H et al (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotech Bioch 71:1244–1251
Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2002) Dual cellulose-digesting system of the wood-feeding termite Coptotermes formosanus Shiraki. Insect Biochem Mol 32:777–784
Ngugi DK, Brune A (2012) Nitrate reduction nitrous oxide formation and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ Microbiol 14:860–871
Ngugi DK, Ji R, Brune A (2011) Nitrogen mineralization denitrification and nitrate ammonification by soil-feeding termites: a 15 N-based approach. Biogeochemistry 103:355–369
Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T (2011) Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3:702–714
Noda S, Hongoh Y, Sato T, Ohkuma M (2009) Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 9:1–12
Noirot C (1955) Recherches sur le polymorphisme des termites supérieurs (Termitidae). Ann Sci Nat Zool 17:399–595
Noirot C (1969) Glands and secretions. In: Krishna K, Weesner F (eds) Biology of termites. Academic Press, New York and London
Noirot C (1985) The caste system in higher termites. In: Watson J, Okot-Kotber B, Noirot C (eds) Caste differentiation in social insects. Pergamon Press, Oxford
Otani S, Mikaelyan A, Nobre T et al (2014) Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol 23:4631–4644
Oyarzun SE, Crawshaw GJ, Valdes EV (1996) Nutrition of the Tamandua. I. Nutrient composition of termites (Nasutitermes spp.) and stomach contents from wild tamanduas (Tamandua tetradactyla). Zoo Biol 15:509–524
Poulsen M, Hu H, Li C et al (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci USA 111:14500–14505
Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596
Salem H, Florez L, Gerardo N, Kaltenpoth M (2015) An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc R Soc B 282:20142957
Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source platform-independent community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541
Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Axial dynamics stability and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6018–6024
Schnell IB, Bohmann K, Gilbert MTP (2015) Tag jumps illuminated–reducing sequence-to-sample misidentifications in metabarcoding studies. Mol Ecol Resour 15:1289–1303
Schwab DB, Riggs HE, Newton ILG, Moczek AP (2016) Developmental and ecological benefits of the maternally transmitted microbiota in a dung beetle. Am Nat 188:679–692
Shimada K, Lo N, Kitade O, Wakui A, Maekawa K (2013) Cellulolytic protist numbers rise and fall dramatically in termite queens and kings during colony foundation. Eukaryot Cell 12:545–550
Su L, Yang L, Huang S et al (2016) Comparative gut microbiomes of four species representing the higher and the lower termites. J Insect Sci 16(97):1–9
Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut bacteroidetes: the food connection. Front Microbiol 2. doi:10.3389/fmicb.2011.00093
Thongaram T, Hongoh Y, Kosono S et al (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–238
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267
Wang Y, Su L, Huang S et al (2016) Diversity and resilience of the wood-feeding higher termite Mironasutitermes shangchengensis gut microbiota in response to temporal and diet variations. Ecol Evol 6:8235–8242
Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Hyde ER (2017) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5(1):27
Yilmaz P, Parfrey LW, Yarza P et al (2014) The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:D643–D648
Zhang M, Liu N, Qian C et al (2014) Phylogenetic and functional analysis of gut microbiota of a fungus-growing higher termite: Bacteroidetes from higher termites are a rich source of β-glucosidase genes. Microb Ecol 68:416–425
Funding
This study did not benefit from a special funding.
Author information
Authors and Affiliations
Contributions
Author's contribution
All Authors listed on the title page have contributed significantly to the work, have participated to the improvement of the quality of the manuscript and agree to its submission to the Antonie van Leeuwenhoek.
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all co-authors (Vincent Hervé, Philippe Mora, Alain Robert, Sophie Frechault, Corinne Rouland-Lefèvre, Edouard Miambi), I declare that we have no conflict of interest to underline.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Diouf, M., Hervé, V., Mora, P. et al. Evidence from the gut microbiota of swarming alates of a vertical transmission of the bacterial symbionts in Nasutitermes arborum (Termitidae, Nasutitermitinae). Antonie van Leeuwenhoek 111, 573–587 (2018). https://doi.org/10.1007/s10482-017-0978-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10482-017-0978-4