Differences in bacterial composition between men’s and women’s restrooms and other common areas within a public building

Abstract

Humans distribute a wide range of microorganisms around building interiors, and some of these are potentially pathogenic. Recent research established that humans are the main drivers of the indoor microbiome and up to now significant literature has been produced about this topic. Here we analyzed differences in bacterial composition between men’s and women’s restrooms and other common areas within the same public building. Bacterial DNA samples were collected from restrooms and halls of a three-floor building from the Federal University of Pampa, RS, Brazil. The bacterial community was characterized by amplification of the V4 region of the 16S rRNA gene and sequencing. Throughout all samples, the most abundant phylum was Proteobacteria, followed by Actinobacteria, Bacteroidetes and Firmicutes. Beta diversity metrics showed that the structure of the bacterial communities were different among the areas and floors tested, however, only 6–9% of the variation in bacterial communities was explained by the area and floors sampled. A few microorganisms showed significantly differential abundance between men’s and women’s restrooms, but in general, the bacterial communities from both places were very similar. Finally, significant differences among the microbial community profile from different floors were reported, suggesting that the type of use and occupant demographic within the building may directly influence bacterial dispersion and establishment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adams RI, Bateman AC, Bik HM, Meadow JF (2015) Microbiota of the indoor environment: a meta-analysis. Microbiome 3:49. https://doi.org/10.1186/s40168-015-0108-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barberán A, Dunn RR, Reich BJ et al (2015) The ecology of microscopic life in household dust. Proc R Soc B Biol Sci 282:20151139. https://doi.org/10.1098/rspb.2015.1139

    Article  Google Scholar 

  3. Cai L, Ju F, Zhang T (2013) Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol 98:3317–3326. https://doi.org/10.1007/s00253-013-5402-z

    Article  PubMed  Google Scholar 

  4. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Chu W-L, Tneh S-Y, Ambu S (2013) A survey of airborne algae and cyanobacteria within the indoor environment of an office building in Kuala Lumpur, Malaysia. Grana 52:207–220. https://doi.org/10.1080/00173134.2013.789925

    Article  Google Scholar 

  7. Dannemiller KC, Gent JF, Leaderer BP, Peccia J (2016) Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air 26:179–192. https://doi.org/10.1111/ina.12205

    CAS  Article  PubMed  Google Scholar 

  8. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/aem.03006-05

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Dewhirst FE, Chen T, Izard J et al (2010) The human oral microbiome. J Bacteriol 192:5002–5017. https://doi.org/10.1128/JB.00542-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    CAS  Article  PubMed  Google Scholar 

  11. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    CAS  Article  PubMed  Google Scholar 

  12. Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA 105:17994–17999. https://doi.org/10.1073/pnas.0807920105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Flores GE, Bates ST, Knights D et al (2011) Microbial biogeography of public restroom surfaces. PLoS ONE 6:e28132. https://doi.org/10.1371/journal.pone.0028132

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fouts DE, Pieper R, Szpakowski S et al (2012) Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med 10:174. https://doi.org/10.1186/1479-5876-10-174

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Gibbons SM, Schwartz T, Fouquier J et al (2014) Ecological succession and viability of human-associated microbiota on restroom surfaces. Appl Environ Microbiol 81:765–773. https://doi.org/10.1128/aem.03117-14

    Article  PubMed  Google Scholar 

  16. Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9:244–253. https://doi.org/10.1038/nrmicro2537

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Grice EA, Kong HH, Renaud G et al (2008) A diversity profile of the human skin microbiota. Genome Res 18:1043–1050. https://doi.org/10.1101/gr.075549.107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Harbison AB, Carson MA, Lamit LJ et al (2016) A novel isolate and widespread abundance of the candidate alphaproteobacterial order (Ellin 329), in southern Appalachian peatlands. FEMS Microbiol Lett 363:fnw151. https://doi.org/10.1093/femsle/fnw151

    Article  PubMed  Google Scholar 

  19. Hyun K, Choi J, Ki D et al (2015) Bathroom wastewater treatment in constructed wetlands with planting, non-planting and aeration, non-aeration conditions. Desalin Water Treat 57:709–717. https://doi.org/10.1080/19443994.2014.997991

    Article  Google Scholar 

  20. Kelley ST, Dobler S (2010) Comparative analysis of microbial diversity in Longitarsus flea beetles (Coleoptera: Chrysomelidae). Genetica 139:541–550. https://doi.org/10.1007/s10709-010-9498-0

    Article  PubMed  Google Scholar 

  21. Kembel SW, Jones E, Kline J et al (2012a) Architectural design influences the diversity and structure of the built environment microbiome. ISME J 6:1469–1479. https://doi.org/10.1038/ismej.2011.211

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kembel SW, Jones E, Kline J et al (2012b) Architectural design influences the diversity and structure of the built environment microbiome. ISME J 6:1469

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Klepeis NE, Nelson WC, Ott WR et al (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252. https://doi.org/10.1038/sj.jea.7500165

    CAS  Article  PubMed  Google Scholar 

  24. Lax S, Smith DP, Hampton-Marcell J et al (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052. https://doi.org/10.1126/science.1254529

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Lax S, Nagler CR, Gilbert JA (2015) Our interface with the built environment: immunity and the indoor microbiota. Trends Immunol 36:121–123. https://doi.org/10.1016/j.it.2015.01.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Lemos LN, Fulthorpe RR, Triplett EW, Roesch LF (2011) Rethinking microbial diversity analysis in the high throughput sequencing era. J Microbiol Methods 86:42–51

    CAS  Article  PubMed  Google Scholar 

  27. Li J, Kleintschek T, Rieder A et al (2013) Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications. ACS Appl Mater Interfaces 5:6704–6711. https://doi.org/10.1021/am401532z

    CAS  Article  PubMed  Google Scholar 

  28. Lu J, Buse H, Struewing I et al (2016) Annual variations and effects of temperature on Legionella spp. and other potential opportunistic pathogens in a bathroom. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-7921-5

    Google Scholar 

  29. Martin LJ, Adams RI, Bateman A et al (2015) Evolution of the indoor biome. Trends Ecol Evol 30:223–232. https://doi.org/10.1016/j.tree.2015.02.001

    Article  PubMed  Google Scholar 

  30. McBride MJ (2014) The family flavobacteriaceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes: other major lineages of bacteria and the archaea. Springer, Berlin, pp 643–676

    Google Scholar 

  31. Meadow JF, Altrichter AE, Kembel SW et al (2014) Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 24:41–48. https://doi.org/10.1111/ina.12047

    CAS  Article  PubMed  Google Scholar 

  32. Medrano-Félix A, Martínez C, Castro-del Campo N et al (2010) Impact of prescribed cleaning and disinfectant use on microbial contamination in the home. J Appl Microbiol 110:463–471. https://doi.org/10.1111/j.1365-2672.2010.04901.x

    Article  PubMed  Google Scholar 

  33. Mueller NT, Bakacs E, Combellick J et al (2015) The infant microbiome development: mom matters. Trends Mol Med 21:109–117

    Article  PubMed  Google Scholar 

  34. Mulligan ME, Murray-Leisure KA, Ribner BS et al (1993) Methicillin-resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am J Med 94:313–328. https://doi.org/10.1016/0002-9343(93)90063-u

    CAS  Article  PubMed  Google Scholar 

  35. Oksanen J, Blanchet FG, Kindt R et al (2015) Vegan: community ecology package. R package vegan, vers. 2.2-1

  36. Prussin AJ, Marr LC (2015) Sources of airborne microorganisms in the built environment. Microbiome. https://doi.org/10.1186/s40168-015-0144-z

    PubMed  PubMed Central  Google Scholar 

  37. Pylro VS, Roesch LFW, Morais DK et al (2014) Data analysis for 16S microbial profiling from different benchtop sequencing platforms. J Microbiol Methods 107:30–37. https://doi.org/10.1016/j.mimet.2014.08.018

    CAS  Article  PubMed  Google Scholar 

  38. Pylro VS, Morais DK, de Oliveira FS et al (2016) BMPOS: a flexible and user-friendly tool sets for microbiome studies. Microb Ecol 72:443–447

    Article  PubMed  Google Scholar 

  39. Qian J, Hospodsky D, Yamamoto N et al (2012) Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 22:339–351. https://doi.org/10.1111/j.1600-0668.2012.00769.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Ramos CA, Viegas C, Verde SC et al (2016) Characterizing the fungal and bacterial microflora and concentrations in fitness centres. Indoor Built Environ 25:872–882. https://doi.org/10.1177/1420326x15587954

    Article  Google Scholar 

  41. Reid G, Younes JA, Van der Mei HC et al (2010) Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 9:27–38. https://doi.org/10.1038/nrmicro2473

    Article  PubMed  Google Scholar 

  42. Rintala H, Pitkäranta M, Täubel M (2012) Microbial Communities Associated with House Dust. Adv Appl Microbiol 78:75–120

    CAS  Article  PubMed  Google Scholar 

  43. Sinclair RG, Gerba CP (2010) Microbial contamination in kitchens and bathrooms of rural Cambodian village households. Lett Appl Microbiol 52:144–149. https://doi.org/10.1111/j.1472-765x.2010.02978.x

    Article  PubMed  Google Scholar 

  44. Suleiman AK, Gonzatto R, Aita C et al (2016) Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biol Biochem 97:71–82

    CAS  Article  Google Scholar 

  45. Wang R-F, Beggs ML, Erickson BD, Cerniglia CE (2004) DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol Cell Probes 18:223–234. https://doi.org/10.1016/j.mcp.2004.03.002

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Luiz Fernando Wurdig Roesch.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its proposes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dobbler, P.C.T., Laureano, Á.M., Sarzi, D.S. et al. Differences in bacterial composition between men’s and women’s restrooms and other common areas within a public building. Antonie van Leeuwenhoek 111, 551–561 (2018). https://doi.org/10.1007/s10482-017-0976-6

Download citation

Keywords

  • 16S rRNA
  • Microbiome
  • Bacterial diversity
  • Building
  • Dust
  • Indoor microbiome