Microbiota associated with tubes of Escarpia sp. from cold seeps in the southwestern Atlantic Ocean constitutes a community distinct from that of surrounding marine sediment and water

  • Renata Medina-Silva
  • Rafael R. Oliveira
  • Fernanda J. Trindade
  • Luiz G. A. Borges
  • Taiz L. Lopes Simão
  • Adolpho H. Augustin
  • Fernanda P. Valdez
  • Marcelo J. Constant
  • Carolina L. Simundi
  • Eduardo Eizirik
  • Claudia Groposo
  • Dennis J. Miller
  • Priscila Reis da Silva
  • Adriano R. Viana
  • João M. M. Ketzer
  • Adriana Giongo
Original Paper

Abstract

As the depth increases and the light fades in oceanic cold seeps, a variety of chemosynthetic-based benthic communities arise. Previous assessments reported polychaete annelids belonging to the family Siboglinidae as part of the fauna at cold seeps, with the ‘Vestimentifera’ clade containing specialists that depend on microbial chemosynthetic endosymbionts for nutrition. Little information exists concerning the microbiota of the external portion of the vestimentiferan trunk wall. We employed 16S rDNA-based metabarcoding to describe the external microbiota of the chitin tubes from the vestimentiferan Escarpia collected from a chemosynthetic community in a cold seep area at the southwestern Atlantic Ocean. The most abundant operational taxonomic unit (OTU) belonged to the family Pirellulaceae (phylum Planctomycetes), and the second most abundant OTU belonged to the order Methylococcales (phylum Proteobacteria), composing an average of 21.1 and 15.4% of the total reads on tubes, respectively. These frequencies contrasted with those from the surrounding environment (sediment and water), where they represent no more than 0.1% of the total reads each. Moreover, some taxa with lower abundances were detected only in Escarpia tube walls. These data constitute on the first report of an epibiont microbial community found in close association with external surface of a cold-seep metazoan, Escarpia sp., from a chemosynthetic community in the southwestern Atlantic Ocean.

Keywords

Chemosynthetic community Deep-sea Tube worms Pirellulaceae 

References

  1. Alain K, Olagnon M, Desbruyères D, Pagé A, Barbier G, Juniper SK et al (2002) Phylogenetic characterization of the bacterial assemblage associated with mucous secretion of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol Ecol 42:463–476CrossRefPubMedGoogle Scholar
  2. Andersen AC, Hourdez S, Marie B, Jollivet D, Lallier FH, Sibuet M (2004) Escarpia southwardae sp. nov., a new species of vestimentiferan tubeworm (Annelida, Siboglinidae) from West African cold seeps. Can J Zool 82:980–999CrossRefGoogle Scholar
  3. Arvidson RS, Morse JW, Joye SB (2004) The sulfur biogeochemistry of chemosynthetic cold seep communities, Gulf of Mexico, USA. Mar Chem 87:97–119CrossRefGoogle Scholar
  4. Baco AR, Rowden AA, Levin LA, Smith CR, Bowden DA (2010) Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin. Mar Geol 272:251–259CrossRefGoogle Scholar
  5. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knights R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917CrossRefPubMedGoogle Scholar
  6. Bengtsson MM, Øvreås L (2010) Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol 10:261CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bergquist DC, Ward T, Cordes EE, McNelis T, Howlett S, Kosoff R et al (2003) Community structure of vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps. J Exp Mar Biol Ecol 289:197–222CrossRefGoogle Scholar
  8. Boetius A, Wenzhöfer F (2013) Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci 6:725–734CrossRefGoogle Scholar
  9. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefPubMedGoogle Scholar
  10. Bowman JP (2005) Methylococcalles ord. nov. In: Garrity G, Brenner DJ, Krieg NR, Staley JR (eds) Bergey’s manual of systematic bacteriology, vol 2. The proteobacteria, Part B: the gammaproteobacteria. Springer, New York, pp 248–270CrossRefGoogle Scholar
  11. Burgin AJ, Yang WH, Hamilton SK, Silver WL (2011) Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Front Ecol Environ 9:44–52CrossRefGoogle Scholar
  12. Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468CrossRefPubMedGoogle Scholar
  13. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  14. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522CrossRefPubMedGoogle Scholar
  15. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642CrossRefPubMedGoogle Scholar
  16. Cowart DA, Huang C, Arnaud-Haond S, Carney SL, Fisher CR, Scheffer SW (2013) Restriction to large-scale gene flow vs. regional panmixia among cold seep Escarpia spp. (Polychaeta, Siboglinidae). Mol Ecol 22:4147–4162CrossRefPubMedGoogle Scholar
  17. Das A, Sujith PP, Mourya BS, Biche SU, LokaBharathi PA (2011) Chemosynthetic activity prevails in deep-sea sediment of the Central India Basin. Extremophiles 15:177–189CrossRefPubMedGoogle Scholar
  18. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503CrossRefPubMedGoogle Scholar
  19. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072CrossRefPubMedPubMedCentralGoogle Scholar
  20. Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740CrossRefPubMedGoogle Scholar
  22. Duperron S, de Beer D, Zbinden M, Boetius A, Schipani V, Kahil N et al (2009) Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean. FEMS Microbiol Ecol 69:395–409CrossRefPubMedGoogle Scholar
  23. Duperron S, Rodrigues CF, Léger N, Szafranski K, Decker C, Olu K et al (2012) Diversity of symbioses between chemosynthetic bacteria and metazoans at the Guiness cold seep site (Gulf of Guinea, West Africa). Microbiol Open 1:467–480CrossRefGoogle Scholar
  24. Duperron S, Gaudron SM, Lemaitre N, Bayon G (2014) A microbiological and biogeochemical investigation of the cold seep tubeworm Escarpia southwardae (Annelida: Siboglinidae): symbiosis and trace element composition of the tube. Deep Sea Res Part I 90:105–114CrossRefGoogle Scholar
  25. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  26. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  27. Forget NL, Perez M, Juniper SK (2015) Molecular study of bacterial diversity within the trophosome of the vestimentiferan tubeworm Ridgeia piscesae. Mar Ecol 36:35–44CrossRefGoogle Scholar
  28. Gade D, Schlesner H, Glöckner FO, Amann R, Pfeiffer S, Thomm M (2004) Identification of Planctomycetes with order-, genus-, and strain-specific 16S rRNA-targeted probes. Microb Ecol 47:243–251CrossRefPubMedGoogle Scholar
  29. Gardebrecht A, Markert S, Sievert SM, Felbeck H, Thürmer A, Albrecht D et al (2012) Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonara revealed by proteogenomics. ISME J 6:766–776CrossRefPubMedGoogle Scholar
  30. Georgieva MN, Little CTS, Glover AG, Ball AD (2015) Mineralization of Alvinella polychaete tubes at hydrothermal vents. Geobiology 13:152–169CrossRefPubMedGoogle Scholar
  31. Giongo A, Haag T, Simão TLL, Medina-Silva R, Utz LRP, Bogo MR et al (2016) Discovery of a chemosynthesis-based community in the Western South Atlantic Ocean. Deep Sea Res Part I 112:45–56CrossRefGoogle Scholar
  32. Goffredi SK, Wilpiszeski R, Lee R, Orphan VJ (2008) Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME J 2:204–220CrossRefPubMedGoogle Scholar
  33. Grote J, Just G, Labrenz M, Herndl GJ, Jürgens K (2008) Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Sea. Appl Environ Microbiol 74:7546–7551CrossRefPubMedPubMedCentralGoogle Scholar
  34. Haddad A, Camacho F, Durand P, Cary SC (1995) Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl Environ Microbiol 61:1679–1687PubMedPubMedCentralGoogle Scholar
  35. Hamdan LJ, Coffin RB, Sikaroodi M, Greinert J, Treude T, Gillevet PM (2013) Ocean currents shape the microbiome of Arctic marine sediments. ISME J 7:685–696CrossRefPubMedGoogle Scholar
  36. Harmer TL, Rotjan RD, Nussbaumer AD, Bright M, Ng AW, DeChaine EG et al (2008) Free-living tubeworm endosymbionts found at deep-sea vents. Appl Environ Microbiol 74:3895–3898CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hilário A, Capa M, Dahlgren TG, Halanych KM, Little CTS, Thornhill DJ et al (2011) New perspectives on the ecology and evolution of siboglinid tubeworms. PLoS ONE 6:e16309CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ho A, Angel R, Veraart AJ, Daebeler A, Jia Z, Kim SY, Kerckhof F, Boon N, Bodelier PLE (2016) Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front Microbiol 7:1285CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hovland M, Gardner JV, Judd AG (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2:127–136CrossRefGoogle Scholar
  40. Hovland M, Svensen H, Forsberg CF, Johansen H, Fichler C, Fossa JH et al (2005) Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing. Mar Geol 218:191–206CrossRefGoogle Scholar
  41. Hovland M, Jensen S, Fichler C (2012) Methane and minor oil macro-seep systems—their complexity and environmental significance. Mar Geol 332–334:163–173CrossRefGoogle Scholar
  42. Kalanetra KM, Nelson DC (2010) Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. Mar Biol 157:791–800CrossRefPubMedGoogle Scholar
  43. Kellogg CA, Ross SW, Brooke SD (2016) Bacterial community diversity of the deep-sea octocoral Paramuricea placomus. PeerJ 4:e2529CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kniemeyer O, Musat F, Sievert SM et al (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–902CrossRefPubMedGoogle Scholar
  45. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Ann Rev Microbiol 63:311–334CrossRefGoogle Scholar
  46. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefPubMedGoogle Scholar
  47. Lawler SN, Kellogg CA, France SC, Clostio RW, Brooke SD, Ross SW (2016) Coral-associated bacterial diversity in conserved across two deep-sea Anthothela species. Front Microbiol 7:458CrossRefPubMedPubMedCentralGoogle Scholar
  48. Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr Mar Biol Ann Rev 43:1–46Google Scholar
  49. López-García P, Gaill F, Moreira D (2002) Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ Microbiol 4:202–215Google Scholar
  50. Lösekann T, Robador A, Niemann H, Knittel K, Boetius A, Dubilier N (2008) Endosymbiosis between bacteria and deep-sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10:3237–3254CrossRefPubMedGoogle Scholar
  51. Luff R, Wallmann K, Aloisi G (2004) Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet Sci Lett 221:337–353CrossRefGoogle Scholar
  52. Miglietta MP, Hourdez S, Cowart DA, Schaeffer SW, Fisher C (2010) Species boundaries of Gulf of Mexico vestimentiferans (Polychaeta, Siboglinidae) inferred from mitochondrial genes. Deep Sea Res Part II Top Stud Oceanogr 57:1916–1925CrossRefGoogle Scholar
  53. Milice M, Tomasch J, Wos-Oxley ML, Wang H, Jáuregui R, Camarinha-Silva A et al (2016) Low diversity of planktonic bacteria in tropical ocean. Sci Rep 6:19054CrossRefGoogle Scholar
  54. Miller DJ, Ketzer JM, Viana AR, Kowsmann RO, Freire AFM, Oreiro SG et al (2015) Natural gas hydrates in the Rio Grande Cone (Brazil): a new province in the western South Atlantic. Mar Petrol Geol 67:187–196CrossRefGoogle Scholar
  55. Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48CrossRefPubMedGoogle Scholar
  56. Navas-Molina J, Peralta-Sánchez JM, González A, Vásquez-Baeza Y, Xu Z, Ursell LL et al (2013) Advancing our understanding of the human microbiome using QIIME. Methods Enzymol 531:371–444CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nunoura T, Takaki Y, Kazama H, Hirai M, Ashi J, Imachi H et al (2012) Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ 27:382–390CrossRefPubMedPubMedCentralGoogle Scholar
  58. Olu K, Cordes EE, Fisher CR, Brooks JM, Sibuet M, Desbruyères D (2010) Biogeography and potential exchanges among the Atlantic Equatorial belt cold-seep faunas. PLoS ONE 5:e11967CrossRefPubMedPubMedCentralGoogle Scholar
  59. Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP et al (1984) Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science 226:965–967CrossRefPubMedGoogle Scholar
  60. Perez M, Juniper SK (2016) Insights into symbiont population structure among three vestimentiferan tubeworms host species at Eastern Pacific spreading centers. Appl Env Microbiol 82:5194–5205CrossRefGoogle Scholar
  61. Raggi L, Schubotz F, Hinrichs KU, Dubilier N, Petersen JM (2013) Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the southern Gulf of Mexico. Environ Microbiol 15:1969–1987CrossRefPubMedGoogle Scholar
  62. Rodrigues CF, Hilário A, Cunha MR, Weightman AJ, Webster G (2011) Microbial diversity in Frenulata (Siboglinidae, Polychaeta) species from mud vulcanoes in the Gulf of Cadiz (NE Atlantic). Antonie Leeuwenhoek 100:83–98CrossRefPubMedGoogle Scholar
  63. Rouse GW (2001) A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera. Zool J Linn Soc-Lond 132:55–80CrossRefGoogle Scholar
  64. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  65. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 6:863–864CrossRefGoogle Scholar
  66. Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS, Connon SA et al (2015) Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the ‘deep sea-1’ clade of marine methanotrophs. Int J Syst Evol Microbiol 65:251–259CrossRefPubMedGoogle Scholar
  67. Thiel V, Hügler M, Blümel M, Baumann HI, Gärtner A, Schmaljohann R et al (2012) Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: lessons from hydrothermal vent associated tubeworms from the Mediterranean Sea. Front Microbiol 3:423CrossRefPubMedPubMedCentralGoogle Scholar
  68. Thornhill DJ, Wiley AA, Campell AL, Bartol FF, Teske A, Halanych K (2008) Endosymbionts of Siboglinum fiordicum and the phylogeny of bacterial endosymbionts in siboglinidae (Annelida). Biol Bull 214:135–144CrossRefPubMedGoogle Scholar
  69. Tunnicliffe V, Juniper K, Sibuet M (2003) Reducing environments of the deep-sea floor. In: Tyler PA (ed) Ecosystems of the deep oceans. Elsevier, Amsterdam, pp 81–110Google Scholar
  70. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience 2:16CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wahl M, Goecke F, Labes A, Debretsov S, Weinberger F (2012) The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 3:292CrossRefPubMedPubMedCentralGoogle Scholar
  72. Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D’Hondt S (2016) Bacterial diversity and community composition from seasurface to subseafloor. ISME J 10:979–989CrossRefPubMedGoogle Scholar
  73. Ward N, Staley JT, Fuerst JA, Giovannoni S, Schlesner H, Stackerbrandt E (2006) The order Planctomycetales, including the genera Planctomyces, Pirellula, Gemmata and Isosphaera and the Candidatus Genera Brocadia, Kuenenia and Scalindua. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 757–793CrossRefGoogle Scholar
  74. Watsuji TO, Nakagawa S, Tsuchida S, Toki T, Hirota A, Tsunogai U et al (2010) Diversity and function of epibiotic microbial communities on the galatheid crab, Shinkaia crosnieri. Microb Environ 25:288–294CrossRefGoogle Scholar
  75. Watsuji TO, Yamamoto A, Motoki K, Ueda K, Hada E, Takaki Y et al (2015) Molecular evidence of digestion and absorption of epibiotic bacterial community by deep-sea crab Shinkaia crosnieri. ISME J 9:821–831CrossRefPubMedGoogle Scholar
  76. Zimmermann J, Lott C, Weber M, Ramette A, Bright M, Dubilier N, Petersen JM (2014) Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent. Environ Microbiol 16:3638–3656CrossRefPubMedGoogle Scholar
  77. Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM et al (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6:e24570CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Renata Medina-Silva
    • 1
    • 2
  • Rafael R. Oliveira
    • 1
  • Fernanda J. Trindade
    • 2
  • Luiz G. A. Borges
    • 1
  • Taiz L. Lopes Simão
    • 2
  • Adolpho H. Augustin
    • 1
  • Fernanda P. Valdez
    • 2
  • Marcelo J. Constant
    • 1
  • Carolina L. Simundi
    • 1
  • Eduardo Eizirik
    • 2
  • Claudia Groposo
    • 3
  • Dennis J. Miller
    • 3
  • Priscila Reis da Silva
    • 3
  • Adriano R. Viana
    • 4
  • João M. M. Ketzer
    • 1
  • Adriana Giongo
    • 1
    • 5
  1. 1.Instituto do Petróleo e dos Recursos NaturaisPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Faculdade de BiociênciasPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  3. 3.Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello – CENPESPETROBRASRio de JaneiroBrazil
  4. 4.PETROBRAS, E&P-EXP/GEOF/MNSRio de JaneiroBrazil
  5. 5.Porto AlegreBrazil

Personalised recommendations