Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
CAS
Article
PubMed
PubMed Central
Google Scholar
Ballance S, Børsheim KY, Inngjerdingen K et al (2007) A re-examination and partial characterisation of polysaccharides released by mild acid hydrolysis from the chlorite-treated leaves of Sphagnum papillosum. Carbohydr Polym 67:104–115. https://doi.org/10.1016/j.carbpol.2006.04.020
CAS
Article
Google Scholar
Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Third International AAAI Conference on Weblogs and Social Media. pp 361–362
Bayer EA, Aviv R (2013) Lignocellulose-decomposing bacteria and their enzyme systems. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes. Springer, Berlin, pp 578–617
Google Scholar
Bragina A, Berg C, Cardinale M et al (2012) Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J 6:802–813. https://doi.org/10.1038/ismej.2011.151
CAS
Article
PubMed
Google Scholar
Caporaso J, Kuczynski J, Stombaugh J (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth0510-335
CAS
Article
PubMed
PubMed Central
Google Scholar
Dedysh SN, Kulichevskaya IS (2013) Acidophilic Planctomycetes: expanding the horizons of new planctomycete diversity. In: Fuerst JA (ed) Planctomycetes: cell structure. Humana Press, Origins and Biology, pp 125–139
Chapter
Google Scholar
Dedysh SN, Pankratov TA, Belova SE et al (2006) Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72:2110–2117. https://doi.org/10.1128/AEM.72.3.2110-2117.2006
CAS
Article
PubMed
PubMed Central
Google Scholar
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461
CAS
Article
PubMed
Google Scholar
Eichorst SA, Kuske CR (2012) Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl Environ Microbiol 78:2316–2327. https://doi.org/10.1128/AEM.07313-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Fuerst JA (1995) The Planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology 141:1493–1506. https://doi.org/10.1099/13500872-141-7-1493
CAS
Article
PubMed
Google Scholar
Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413. https://doi.org/10.1038/nrmicro2578
CAS
Article
PubMed
Google Scholar
Huson DH, Mitra S, Ruscheweyh H-J et al (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560. https://doi.org/10.1101/gr.120618.111
CAS
Article
PubMed
PubMed Central
Google Scholar
Ivanova AO, Dedysh SN (2012) Abundance, diversity, and depth distribution of Planctomycetes in acidic northern wetlands. Front Microbiol. https://doi.org/10.3389/fmicb.2012.00005
PubMed
PubMed Central
Google Scholar
Ivanova AA, Kulichevskaya IS, Merkel AY et al (2016a) High diversity of Planctomycetes in soils of two lichen-dominated sub-arctic ecosystems of northwestern Siberia. Front Microbiol 7:2065. https://doi.org/10.3389/fmicb.2016.02065
Article
PubMed
PubMed Central
Google Scholar
Ivanova AA, Wegner CE, Kim Y et al (2016b) Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Mol Ecol 25:4818–4835. https://doi.org/10.1111/mec.13806
CAS
Article
PubMed
Google Scholar
Ivanova AA, Naumoff DG, Miroshnikov KK et al (2017) Comparative genomics of four Isosphaeraceae planctomycetes: a common pool of plasmids and glycoside hydrolase genes shared by Paludisphaera borealis PX4T, Isosphaera pallida IS1BT, Singulisphaera acidiphila DSM 18658T, and strain SH-PL62. Front Microbiol 8:412. https://doi.org/10.3389/fmicb.2017.00412
Article
PubMed
PubMed Central
Google Scholar
Kanokratana P, Uengwetwanit T, Rattanachomsri U et al (2011) Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb Ecol 61:518–528. https://doi.org/10.1007/s00248-010-9766-7
Article
PubMed
Google Scholar
Kopylova E, Noé L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211–3217. https://doi.org/10.1093/bioinformatics/bts611
CAS
Article
PubMed
Google Scholar
Kovaleva OL, Merkel AY, Novikov AA et al (2015) Tepidisphaera mucosa gen.nov., sp.nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam.nov., and a new order, Tepidisphaerales. Int J Syst Evol Microbiol 65:549–555. https://doi.org/10.1099/ijs.0.070151-0
CAS
Article
PubMed
Google Scholar
Kremer C, Pettolino F, Bacic A, Drinnan A (2004) Distribution of cell wall components in Sphagnum hyaline cells and in liverwort and hornwort elaters. Planta 219:1023–1035. https://doi.org/10.1007/s00425-004-1308-4
CAS
Article
PubMed
Google Scholar
Kulichevskaia IS, Belova SE, Kevbrin VV et al (2007) Analysis of the bacterial community developing in the course of Sphagnum moss decomposition. Mikrobiologiia 76:702–710. https://doi.org/10.1134/S0026261707050165
CAS
PubMed
Google Scholar
Kulichevskaya IS, Serkebaeva YM, Kim Y, et al (2012) Telmatocola sphagniphila gen. nov., sp. nov., a novel dendriform planctomycete from northern wetlands. Front Microbiol 3:146. https://doi.org/10.3389/fmicb.2012.00146
Kulichevskaya IS, Ivanova AA, Suzina NE et al (2016) Paludisphaera borealis gen. nov., sp. nov., a hydrolytic planctomycete from northern wetlands, and the proposal of Isosphaeraceae fam. nov. Int J Syst Evol Microbiol 66:837–844. https://doi.org/10.1099/ijsem.0.000799
CAS
Article
PubMed
Google Scholar
Masella AP, Bartram AK, Truszkowski JM et al (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform 13:31. https://doi.org/10.1186/1471-2105-13-31
CAS
Article
Google Scholar
Mettel C, Kim Y, Shrestha PM, Liesack W (2010) Extraction of mRNA from soil. Appl Environ Microbiol 76:5995–6000. https://doi.org/10.1128/AEM.03047-09
CAS
Article
PubMed
PubMed Central
Google Scholar
Miller CS, Baker BJ, Thomas BC et al (2011) EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12:R44. https://doi.org/10.1186/gb-2011-12-5-r44
CAS
Article
PubMed
PubMed Central
Google Scholar
Moore EK, Villanueva L, Hopmans EC et al (2015) Abundant trimethylornithine lipids and specific gene sequences are indicative of planctomycete importance at the oxic/anoxic interface in Sphagnum-dominated northern wetlands. Appl Environ Microbiol 81:6333–6344. https://doi.org/10.1128/AEM.00324-15
CAS
Article
PubMed
PubMed Central
Google Scholar
Neef A, Amann R, Schlesner H, Schleifer KH (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144:3257–3266. https://doi.org/10.1099/00221287-144-12-3257
CAS
Article
PubMed
Google Scholar
Nogales B, Moore ER, Llobet-Brossa E et al (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884. https://doi.org/10.1128/AEM.67.4.1874-1884.2001
CAS
Article
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219
CAS
Article
PubMed
Google Scholar
Schlesner H (1994) The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other Planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17:135–145
Article
Google Scholar
Serkebaeva YM, Kim Y, Liesack W, Dedysh SN (2013) Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS ONE 8:e63994. https://doi.org/10.1371/journal.pone.0063994
Article
PubMed
PubMed Central
Google Scholar
Stankiewicz A, Briggs D, Evershed R et al (1998) The fate of chitin in quaternary and tertiary strata. In: Stankiewicz A, Van Bergen P (eds) Nitrogen-containing macromolecules in the bio- and geosphere. American Chemical Society, Wahington DC, pp 211–224
Chapter
Google Scholar
Steger D, Wentrup C, Braunegger C et al (2011) Microorganisms with novel dissimilatory (bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands. Appl Environ Microbiol 77:1231–1242. https://doi.org/10.1128/AEM.01352-10
CAS
Article
PubMed
Google Scholar
Wang J, Jenkins C, Webb RI, Fuerst JA (2002) Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. Appl Environ Microbiol 68:417–422. https://doi.org/10.1128/AEM.68.1.417-422.2002
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Weber CF, King GM (2010) Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a succession gradient on a Hawaiian volcanic deposit. Environ Microbiol 12:1855–1867. https://doi.org/10.1111/j.1462-2920.2010.02190.x
CAS
Article
PubMed
Google Scholar