Antonie van Leeuwenhoek

, Volume 111, Issue 3, pp 413–422 | Cite as

Streptomyces thermoalkaliphilus sp. nov., an alkaline cellulase producing thermophilic actinomycete isolated from tropical rainforest soil

  • Hao Wu
  • Bin Liu
  • Xiaoyun Ou
  • Shangli Pan
  • Yuanyuan Shao
  • Fuchang Huang
Original Paper


During an investigation exploring potential sources of novel thermophilic species and natural products, a novel thermophilic and alkaliphilic actinomycete with alkaline cellulase producing ability, designated strain 4-2-13T, was isolated from soil of a tropical rainforest in Xishuangbanna, Yunnan province, China. The morphological and chemotaxonomic characteristics of strain 4-2-13T are consistent with those of the members of the genus Streptomyces. The strain forms extensively branched aerial mycelia and substrate mycelia. Spiral spore chains were observed on aerial mycelia; spores were oval to cylindrical, with smooth surfaces. The organism was found to contain ll-diaminopimelic acid as the diagnostic diamino acid in the cell wall peptidoglycan. The whole cell hydrolysates were found to contain glucose and ribose. The cellular fatty acid profile mainly consists of anteiso-C17:0 and iso-C16:0. The menaquinones were identified as MK-9(H8), MK-10(H6) and MK-9(H6). The polar lipids profile were found to consist of diphosphatidylglycerol, phosphatidylmethylethanolamine, a ninhydrin-positive glycophospholipid, phosphatidylinositol, phosphatidylglycerol and unidentified glycolipids. The 16S rRNA gene sequence analysis showed that the organism belongs to the genus Streptomyces and in the 16S rRNA gene tree it formed a distinct phyletic line together with the closely related type strain Streptomyces burgazadensis Z1R7T (95.2% sequence similarity). However, the phenotypic characteristics of strain 4-2-13T are significantly different from those of S. burgazadensis Z1R7T. Based on the phenotypic, chemotaxonomic and phylogenetic characteristics, strain 4-2-13T represents a novel species in the genus Streptomyces, for which the name Streptomyces thermoalkaliphilus sp. nov. is proposed. The type strain is 4-2-13T (= DSM 42159T = CGMCC 4. 7205T).


Streptomyces thermoalkaliphilus sp. nov. Polyphasic taxonomy 16S rRNA gene Alkaline cellulase 



This research was supported by Guangxi Natural Science Foundation Key Programs (No. 2010GXNSFD013027) and Project of Guangxi Innovation Team of China Agriculture Research System (nycytxgxcxtd-07-01).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2017_964_MOESM1_ESM.doc (464 kb)
Supplementary material 1 (DOC 463 kb)


  1. Aabid MS, Abubakar W, Parvaiz HQ, Shakeel-u R, Saleem M, Shiekh AA, Aehtesham H, Aiyatullah S, Asif KQ, Ubaid SM, Abid H, Ajay K (2016) Isolation and characterization of alborixin from Streptomyces scabrisporus: a potent cytotoxic agent against human colon (HCT-116) cancer cells. Chem Biol Interact 256:198–208CrossRefGoogle Scholar
  2. Al-Bari MA, Bhuiyan MS, Flores ME, Petrosyan P, García-Varela M, Islam MA (2005) Streptomyces bangladeshensis sp. nov., isolated from soil, which produces bis-(2-ethylhexyl)phthalate. Int J Syst Evol Microbiol 55(5):1973–1977CrossRefPubMedGoogle Scholar
  3. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Bergey’s manual of determinative bacteriology. The Williams & Wilkins Co., BaltimoreGoogle Scholar
  4. Busarakam K, Bull AT, Girard G, Labeda DP, van Wezel GP, Goodfellow M (2014) Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie Van Leeuwenhoek 105(5):849–861CrossRefPubMedGoogle Scholar
  5. Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198CrossRefPubMedGoogle Scholar
  6. Cheng C, Eman MO, Anastasija R, Matthias G, Vera K-P, Helga S, Ute H, Usama RA (2016) Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett 57:2786–2789CrossRefGoogle Scholar
  7. Collins MD, Howarth OW, Grund E, Kroppenstedt RM (1987) Isolation and structural determination of new members of the vitamin K2 series in Nocardia brasiliensis. FEMS Microbiol Lett 41:35–39CrossRefGoogle Scholar
  8. Cross T (1968) Therrnophilic actinomycetes. J Appl Bacteriol 31:36–53CrossRefPubMedGoogle Scholar
  9. Desai AJ, Dhala SA (1967) Streptomyces thermonitrificans. sp. n., a thermophilic streptomycete. Antonie Leeuwenhoek 33:137–144CrossRefPubMedGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  11. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  12. Gause GF, Preobrazhenskaya TP, Sveshnikova MA, Terekhova LP & Maximova TS (1983) A guide for the determination of actinomycetes. Genera Streptomyces, Streptoverticillium, and Chaina. Moscow: NaukaGoogle Scholar
  13. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322CrossRefGoogle Scholar
  14. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  15. Henssen A (1957) Morphology and system of thermophilic actinomycetes. Arch Mikrobiol 26(4):373–414CrossRefPubMedGoogle Scholar
  16. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145PubMedPubMedCentralGoogle Scholar
  17. Kämpfer P (2012) Genus Streptomyces Waksman and Henrici 1943, 339AL, emend Witt and Stackebrandt 1990, 370, emend Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, part B. Springer, New York, pp 1455–1767Google Scholar
  18. Kelly KL (1964) Inter-Society Color Council-National Bureau of Standards color-name charts illustrated with centroid colors. US Government Printing Office, Washington, DCGoogle Scholar
  19. Kim SB, Goodfellow M (2002) Streptomyces thermospinisporus sp. nov., a moderately thermophilic carboxydotrophic streptomycete isolated from soil. Int J Syst Evol Microbiol 52(4):1225–1228PubMedGoogle Scholar
  20. Kim SB, Falconer C, Williams E, Goodfellow M (1998) Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48(1):59–68CrossRefPubMedGoogle Scholar
  21. Kim B, Sahin N, Minnikin DE, Zakrzewska-Czerwinska J, Mordarski M, Goodfellow M (1999) Classification of thermophilic streptomycetes, including the description of Streptomyces thermoalcalitolerans sp. nov. Int J Syst Bacteriol 49(1):7–17CrossRefPubMedGoogle Scholar
  22. Kim B, al-Tai AM, Kim SB, Somasundaram P, Goodfellow M (2000) Streptomyces thermocoprophilus sp. nov., a cellulase-free endo-xylanase-producing streptomycete. Int J Syst Evol Microbiol 50(2):505–509CrossRefPubMedGoogle Scholar
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Joen YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  24. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  25. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367CrossRefGoogle Scholar
  26. Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B, Vancanneyt M, Swings J, Kim SB, Liu Z, Chun J, Tamura T, Oguchi A, Kikuchi T, Kikuchi H, Nishii T, Tsuji K, Tase A, Takahashi M, Sakane T, Suzuki K-I, Hatano K, Yamaguchi A (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101:73–104CrossRefPubMedGoogle Scholar
  27. Labeda DP, Dunlap CA, Rong XY, Huang Y, Doroghazi JR, Ju KS, Metcalf WW (2017) Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie Van Leeuwenhoek 110:563–583CrossRefPubMedGoogle Scholar
  28. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer D (eds) Actinomycete taxonomy (special publication 6). Society for Industrial Microbiology, Arlington, VA, pp 227–291Google Scholar
  29. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428CrossRefPubMedGoogle Scholar
  30. Manfio GP, Zakrzewska-Czerwinska J, Atalan E, Goodfellow M (1995) Towards minimal standards for the description of Streptomyces species. Biotechnologiia 8:228–237Google Scholar
  31. Mao J, Tang Q, Zhang Z, Wang W, Wei D, Huang Y, Liu Z, Shi Y, Goodfellow M (2007) Streptomyces radiopugnans sp. nov., a radiation-resistant actinomycete isolated from radiation-polluted soil in China. Int J Syst Evol Microbiol 57(11):2578–2582CrossRefPubMedGoogle Scholar
  32. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  33. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  34. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 188:221–233CrossRefGoogle Scholar
  35. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  36. Mordarska H, Mordarski M, Goodfellow M (1972) Chemotaxonomic characters and classification of some nocardioform bacteria. J Gen Microbiol 71:77–86CrossRefPubMedGoogle Scholar
  37. Petrosyan P, García-Varela M, Luz-Madrigal A, Huitrón C, Flores ME (2003) Streptomyces mexicanus sp. nov., a xylanolytic micro-organism isolated from soil. Int J Syst Evol Microbiol 53(1):269–273CrossRefPubMedGoogle Scholar
  38. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110(4):455–456CrossRefPubMedGoogle Scholar
  39. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  40. Saricaoglu S, Isik K, Veyisoglu A, Saygin H, Cetin D, Guven K, Spröer C, Klenk H-P, Sahin N (2014) Streptomyces burgazadensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 64:4043–4048CrossRefPubMedGoogle Scholar
  41. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  42. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  44. Veyisoglu A, Sahin N (2014) Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 64:819–826CrossRefPubMedGoogle Scholar
  45. Waksman SA (1961) Classification, identification and description of genera and species, vol. II. The Actinomycetes. Williams & Wilkins, BaltimoreGoogle Scholar
  46. Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 46:337–341PubMedPubMedCentralGoogle Scholar
  47. Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390CrossRefPubMedGoogle Scholar
  48. Williams ST, Davies FL (1967) Use of a scanning electron microscope for the examination of actinomycetes. J Gen Microbiol 48:171–177CrossRefPubMedGoogle Scholar
  49. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813PubMedGoogle Scholar
  50. Zhu H, Jiang S, Yao Q, Wang Y, Chen M, Chen Y, Guo J (2011) Streptomyces fenghuangensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 61(12):2811–2815CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Hao Wu
    • 1
  • Bin Liu
    • 1
  • Xiaoyun Ou
    • 1
  • Shangli Pan
    • 1
  • Yuanyuan Shao
    • 1
  • Fuchang Huang
    • 1
  1. 1.Institute of Applied Microbiology, College of AgricultureGuangxi UniversityNanningPeople’s Republic of China

Personalised recommendations