Antonie van Leeuwenhoek

, Volume 111, Issue 2, pp 275–284 | Cite as

Proteinivorax hydrogeniformans sp. nov., an anaerobic, haloalkaliphilic bacterium fermenting proteinaceous compounds with high hydrogen production

  • Yulia Boltyanskaya
  • Ekaterina Detkova
  • Nikolay Pimenov
  • Vadim KevbrinEmail author
Original Paper


A search for the organisms responsible for the degradation of biomass of primary producers in Tanatar lakes resulted in the isolation of a novel anaerobic, haloalkaliphilic microorganism, strain Z-710T. The strain grows on proteinaceous substrates (peptides) but not on proteins. A rather limited range of substances of other classes can be utilised together with tryptone but not individually. An interesting physiological feature of the novel strain is a high capacity for hydrogen production (up to 30% v/v) during proteolytic fermentation. Phylogenetic analysis based on the 16S rRNA gene sequence similarity revealed that the organism can be assigned to the previously described genus Proteinivorax. According to its physiological features and the low DNA–DNA hybridisation level of the strain with the type strain of the only previously described Proteinivorax species—Proteinivorax tanatarense Z-910T—strain Z-710T is described here as representing a novel species with the name Proteinivorax hydrogeniformans sp. nov. The type strain is Z-710T (= DSM 102085T = VKM B-3042T).


Alkaliphiles Anaerobic proteolytic bacteria Hydrogen Proteinaceous fermenters Vitamin B12 



This work was supported by the Russian Academy of Sciences Programme No. 30 “Evolution of organic world and planetary processes” and the State Assignment on 2017 for Basic Research “Collection of unique and extremophilic microorganisms for biotechnological application” for Research Center of Biotechnology of the Russian Academy of Sciences. We are grateful to Dr. T. V. Kolganova for the 16S rRNA gene sequencing and to Nadezhda Kostrikina for the electron micrographs.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Begemann MB, Mormile MR, Sitton OC, Wall JD, Elias DA (2012) A streamlined strategy for biohydrogen production with Halanaerobium hydrogeniformans, an alkaliphilic bacterium. Front Microbiol. doi: 10.3389/fmicb.2012.00093 PubMedPubMedCentralGoogle Scholar
  2. Boltyanskaya YuV, Kevbrin VV (2016) Trophic interactions of proteolytic bacteria Proteinivorax tanatarense in an alkaliphilic microbial community. Microbiology 85:481–487CrossRefGoogle Scholar
  3. Boulygina ES, Kuznetsov BB, Marusina AI, Tourova TP, Kravchenko IK, Bykova SA, Kolganova TV, Galchenko VF (2002) The study of nucleotide sequences of nifH genes from some methanotrophic bacteria. Microbiology 71:425–432CrossRefGoogle Scholar
  4. Bryantseva IA, Gorlenko VM, Kompantseva EI, Tourova TP, Kuznetsov BB, Osipov GA (2000) Alkaliphilic heliobacterium Heliorestis baculata sp. nov. and emended description of the genus Heliorestis. Arch Microbiol 174:283–291CrossRefPubMedGoogle Scholar
  5. Drake HL (1994) Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. In: Drake HL (ed) Acetogenesis. Chapman & Hall, New York, pp 3–60CrossRefGoogle Scholar
  6. Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Micribiol 73:2093–2100CrossRefGoogle Scholar
  7. Garnova ES, Zhilina TN, Tourova TP, Kostrikina NA, Zavarzin GA (2004) Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the Transbaikal region of Russia. Extremophiles 8:309–316CrossRefPubMedGoogle Scholar
  8. Gouy M, Guindon S, Gascuel O (2010) SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  9. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  10. Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E (2005) Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad. Int J Syst Evol Microbiol 55:1711–1714CrossRefPubMedGoogle Scholar
  11. Kevbrin V, Boltyanskaya Yu, Zhilina T, Lavrentjeva E, Kuznetsov B (2013) Proteinivorax tanatarense gen. nov., sp. nov., an anaerobic, haloalkaliphilic, proteolytic bacterium isolated from decaying algal bloom, and proposal of Proteinivoraceae fam. nov. Extremophiles 17:747–756CrossRefPubMedGoogle Scholar
  12. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  13. Milford AD, Achenbach LA, Jung DO, Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174:18–27CrossRefPubMedGoogle Scholar
  14. Owen RJ, Hill LR, Lapage SP (1969) Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516CrossRefPubMedGoogle Scholar
  15. Samylina OS, Sapozhnikov FV, Gainanova OY, Ryabova AV, Nikitin MA, Sorokin DY (2014) Algo-bacterial communities of the Kulunda steppe (Altai region, Russia) soda lakes. Microbiology 83:849–860CrossRefGoogle Scholar
  16. Sorokin DY, Panteleeva AN, Tourova TP, Kaparullina EN, Muyzer G (2011) Natronoflexus pectinivorans gen. nov. sp. nov., an obligately anaerobic and alkaliphilic fermentative member of Bacteroidetes from soda lakes. Extremophiles 15:691–696CrossRefPubMedPubMedCentralGoogle Scholar
  17. Sorokin DY, Tourova TP, Sukhacheva MV, Mardanov AV, Ravin NV (2012) Bacterial chitin utilisation at extremely haloalkaline conditions. Extremophiles 16:883–894CrossRefPubMedGoogle Scholar
  18. Sorokin DY, Geleijnse BAM, Kolganova TV, Kleerebezem R, van Loosdrecht MCM (2016) Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions. Environ Microbiol 18:3189–3202CrossRefPubMedGoogle Scholar
  19. Sorokin DY, Kublanov IV, Khijniak TV (2017) Natronospira proteinivora gen. nov., sp. nov, an extremely salttolerant, alkaliphilic gammaproteobacterium from hypersaline soda lakes. Int J Syst Evol Microbiol 67:2604–2608CrossRefPubMedGoogle Scholar
  20. Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Extremophiles 51:1245–1256Google Scholar
  21. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266CrossRefPubMedGoogle Scholar
  22. Trüper HG, Schlegel HG (1964) Sulphur methabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Anton van Leeuwenhoek J Microbiol Serol 30:225–238CrossRefGoogle Scholar
  23. Ye Q, Roh Y, Carroll CL, Blair B, Zhou J, Zhang CL, Fields MW (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70:5595–5602CrossRefPubMedPubMedCentralGoogle Scholar
  24. Zhilina TN, Garnova ES, Tourova TP, Kostrikina NA, Zavarzin GA (2001) Amphibacillus fermentum sp. nov. and Amphibacillus tropicus sp. nov., new alkaliphilic, facultatively anaerobic, saccharolytic bacilli from lake Magadi. Microbiology 70:711–722CrossRefGoogle Scholar
  25. Zhilina TN, Appel R, Probian C, Brossa EL, Harder J, Widdel F, Zavarzin GA (2004) Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253CrossRefPubMedGoogle Scholar
  26. Zhilina TN, Kevbrin VV, Tourova TP, Lysenko AM, Kostrikina NA, Zavarzin GA (2005) Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology 74:557–566CrossRefGoogle Scholar
  27. Zhilina TN, Zavarzina DG, Kevbrin VV, Kolganova TV (2013) Methanocalculus natronophilus sp. nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae. Microbiology 82:698–706CrossRefGoogle Scholar
  28. Zhilina TN, Zavarzina DG, Detkova EN, Patutina EO, Kuznetsov BB (2015) Fuchsiella ferrireducens sp. nov., a novel haloalkaliphilic, lithoautotrophic homoacetogen capable of iron reduction, and emendation of the description of the genus Fuchsiella. Int J Syst Evol Microbiol 65:2432–2440CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia

Personalised recommendations