Skip to main content

Advertisement

Log in

Revisiting the taxonomy of the genus Elizabethkingia using whole-genome sequencing, optical mapping, and MALDI-TOF, along with proposal of three novel Elizabethkingia species: Elizabethkingia bruuniana sp. nov., Elizabethkingia ursingii sp. nov., and Elizabethkingia occulta sp. nov.

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The genus Elizabethkingia is genetically heterogeneous, and the phenotypic similarities between recognized species pose challenges in correct identification of clinically derived isolates. In addition to the type species Elizabethkingia meningoseptica, and more recently proposed Elizabethkingia miricola, Elizabethkingia anophelis and Elizabethkingia endophytica, four genomospecies have long been recognized. By comparing historic DNA–DNA hybridization results with whole genome sequences, optical maps, and MALDI-TOF mass spectra on a large and diverse set of strains, we propose a comprehensive taxonomic revision of this genus. Genomospecies 1 and 2 contain the type strains E. anophelis and E. miricola, respectively. Genomospecies 3 and 4 are herein proposed as novel species named as Elizabethkingia bruuniana sp. nov. (type strain, G0146T = DSM 2975T = CCUG 69503T = CIP 111191T) and Elizabethkingia ursingii sp. nov. (type strain, G4122T = DSM 2974T = CCUG 69496T = CIP 111192T), respectively. Finally, the new species Elizabethkingia occulta sp. nov. (type strain G4070T = DSM 2976T = CCUG 69505T = CIP 111193T), is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auch AF, Klenk HP, Goker M (2010a) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Gen Sci 2(1):142–148. doi:10.4056/sigs.541628

    Article  Google Scholar 

  • Auch AF, von Jan M, Klenk HP, Goker M (2010b) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Gen Sci 2(1):117–134. doi:10.4056/sigs.531120

    Article  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. doi:10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloch KC, Nadarajah R, Jacobs R (1997) Chryseobacterium meningosepticum: an emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine 76(1):30–41

    Article  CAS  PubMed  Google Scholar 

  • Breurec S, Criscuolo A, Diancourt L, Rendueles O, Vandenbogaert M, Passet V, Caro V, Rocha EP, Touchon M, Brisse S (2016) Genomic epidemiology and global diversity of the emerging bacterial pathogen Elizabethkingia anophelis. Sci Rep 6:30379. doi:10.1038/srep30379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruun B (1982) Studies on a collection of strains of the genus Flavobacterium. 1. Biochemical studies. Acta Pathol Microbiol Immunol Scand 90(6):415–421

    CAS  Google Scholar 

  • Bruun B, Ursing J (1987) Phenotypic characterization of Flavobacterium meningosepticum strains identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand 95(1):41–47

    CAS  Google Scholar 

  • Christensen H, Bisgaard M, Frederiksen W, Mutters R, Kuhnert P, Olsen JE (2001) Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 Revision). Int J Syst Evol Microbiol 51(Pt 6):2221–2225. doi:10.1099/00207713-51-6-2221

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29(2):147–167. doi:10.1016/j.femsre.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  • JGI Bacterial DNA Isolation CTAB Protocol. http://1ofdmq2n8tc36m6i46scovo2e.wpengine.netdna-cdn.com/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012.pdf. http://1ofdmq2n8tc36m6i46scovo2e.wpengine.netdna-cdn.com/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012.pdf

  • Criscuolo A, Brisse S (2013) AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics 102(5–6):500–506. doi:10.1016/j.ygeno.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  • Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, Charbonneau A, Constantinides B, Edvenson G, Fay S, Fenton J, Fenzl T, Fish J, Garcia-Gutierrez L, Garland P, Gluck J, Gonzalez I, Guermond S, Guo J, Gupta A, Herr JR, Howe A, Hyer A, Harpfer A, Irber L, Kidd R, Lin D, Lippi J, Mansour T, McA’Nulty P, McDonald E, Mizzi J, Murray KD, Nahum JR, Nanlohy K, Nederbragt AJ, Ortiz-Zuazaga H, Ory J, Pell J, Pepe-Ranney C, Russ ZN, Schwarz E, Scott C, Seaman J, Sievert S, Simpson J, Skennerton CT, Spencer J, Srinivasan R, Standage D, Stapleton JA, Steinman SR, Stein J, Taylor B, Trimble W, Wiencko HL, Wright M, Wyss B, Zhang Q, Zyme E, Brown CT (2015) The khmer software package: enabling efficient nucleotide sequence analysis. F1000Res 4:900. doi:10.12688/f1000research.6924.1

    PubMed  PubMed Central  Google Scholar 

  • da Silva PS, Pereira GH (2013) Elizabethkingia meningoseptica: emergent bacteria causing pneumonia in a critically ill child. Pediatr Int 55(2):231–234. doi:10.1111/j.1442-200X.2012.03650.x

    Article  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772. doi:10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doijad S, Ghosh H, Glaeser S, Kampfer P, Chakraborty T (2016) Taxonomic reassessment of the genus Elizabethkingia using whole genome sequencing: Elizabethkingia endophytica Kampfer et al. 2015 is a later subjective synonym of Elizabethkingia anophelis Kampfer et al. 2011. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001390

    Google Scholar 

  • Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152. doi:10.1093/bioinformatics/bts565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(Pt 1):81–91

    Article  CAS  PubMed  Google Scholar 

  • Green O, Murray P, Gea-Banacloche JC (2008) Sepsis caused by Elizabethkingia miricola successfully treated with tigecycline and levofloxacin. Diagn Microbiol Infect Dis 62(4):430–432. doi:10.1016/j.diagmicrobio.2008.07.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  • Hayek SS, Abd TT, Cribbs SK, Anderson AM, Melendez A, Kobayashi M, Polito C, Wayne Wang YF (2013) Rare Elizabethkingia meningosepticum meningitis case in an immunocompetent adult. Emerg Microbes Infect 2(4):e17. doi:10.1038/emi.2013.16

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedlund BP, Dodsworth JA, Staley JT (2015) The changing landscape of microbial biodiversity exploration and its implications for systematics. Syst Appl Microbiol 38(4):231–236. doi:10.1016/j.syapm.2015.03.003

    Article  PubMed  Google Scholar 

  • Holmes B, Weaver RE, Steigerwalt AG, Brenner DJ (1988) A Taxonomic Study of Flavobacterium spiritivorum and Sphingobacterium mizutae: proposal of Flavobacterium yabuuchiae sp. nov. and Flavobacterium mizutaii comb. nov. Int J Syst Bacteriol 38(4):348–353. doi:10.1099/00207713-38-4-348

    Article  Google Scholar 

  • Holmes B, Steigerwalt AG, Nicholson AC (2013) DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 63(Pt 12):4639–4662. doi:10.1099/ijs.0.054353-0

    Article  Google Scholar 

  • Hsu MS, Liao CH, Huang YT, Liu CY, Yang CJ, Kao KL, Hsueh PR (2011) Clinical features, antimicrobial susceptibilities, and outcomes of Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) bacteremia at a medical center in Taiwan, 1999–2006. Eur J Clin Microbiol Infect Dis 30(10):1271–1278. doi:10.1007/s10096-011-1223-0

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119. doi:10.1186/1471-2105-11-119

    Article  Google Scholar 

  • Kampfer P, Matthews H, Glaeser SP, Martin K, Lodders N, Faye I (2011) Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. Int J Syst Evol Microbiol 61(Pt 11):2670–2675. doi:10.1099/ijs.0.026393-0

    Article  Google Scholar 

  • Kampfer P, Busse HJ, McInroy JA, Glaeser SP (2015) Elizabethkingia endophytica sp. nov., isolated from Zea mays and emended description of Elizabethkingia anophelis. Kampfer et al. 2011. Int J Syst Evol Microbiol 65(7):2187–2193. doi:10.1099/ijs.0.000236

    Article  PubMed  Google Scholar 

  • Kim KK, Kim MK, Lim JH, Park HY, Lee ST (2005) Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55(Pt 3):1287–1293. doi:10.1099/ijs.0.63541-0

    Article  Google Scholar 

  • King EO (1959) Studies on a group of previously unclassified bacteria associated with meningitis in infants. Am J Clin Pathol 31(3):241–247

    Article  CAS  PubMed  Google Scholar 

  • Lau SK, Chow WN, Foo CH, Curreem SO, Lo GC, Teng JL, Chen JH, Ng RH, Wu AK, Cheung IY, Chau SK, Lung DC, Lee RA, Tse CW, Fung KS, Que TL, Woo PC (2016) Elizabethkingia anophelis bacteremia is associated with clinically significant infections and high mortality. Sci Rep 6:26045. doi:10.1038/srep26045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CC, Chen PL, Wang LR, Lee HC, Chang CM, Lee NY, Wu CJ, Shih HI, Ko WC (2006) Fatal case of community-acquired bacteremia and necrotizing fasciitis caused by Chryseobacterium meningosepticum: case report and review of the literature. J Clin Microbiol 44(3):1181–1183. doi:10.1128/JCM.44.3.1181-1183.2006

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2003) Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26(4):523–528. doi:10.1078/072320203770865828

  • Liu Y, Schroder J, Schmidt B (2013) Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 29(3):308–315. doi:10.1093/bioinformatics/bts690

    Article  CAS  PubMed  Google Scholar 

  • Loytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA 102(30):10557–10562. doi:10.1073/pnas.0409137102

    Article  PubMed  PubMed Central  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. doi:10.1186/1471-2105-14-60

    Article  Google Scholar 

  • Moore ER, Mihaylova SA, Vandamme P, Krichevsky MI, Dijkshoorn L (2010) Microbial systematics and taxonomy: relevance for a microbial commons. Res Microbiol 161(6):430–438. doi:10.1016/j.resmic.2010.05.007

    Article  PubMed  Google Scholar 

  • Nicholson AC, Humrighouse BW, Graziano JC, Emery B, McQuiston JR (2016) Draft genome sequences of strains representing each of the Elizabethkingia genomospecies previously determined by DNA-DNA hybridization. Genome Announc. doi:10.1128/genomeA.00045-16

    Google Scholar 

  • Opota O, Diene SM, Bertelli C, Prod’hom G, Eckert P, Greub G (2016) Genome of the carbapenemase-producing clinical isolate Elizabethkingia miricola EM_CHUV and comparative genomics with Elizabethkingia meningoseptica and Elizabethkingia anophelis: evidence for intrinsic multidrug resistance trait of emerging pathogens. Int J Antimicrob Agents. doi:10.1016/j.ijantimicag.2016.09.031

    PubMed  Google Scholar 

  • Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693. doi:10.1093/bioinformatics/btv421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A (2010) How many bootstrap replicates are necessary? J Comput Biol 17(3):337–354. doi:10.1089/cmb.2009.0179

    Article  CAS  PubMed  Google Scholar 

  • Perrin A, Larsonneur E, Nicholson AC, Edwards DJ, Gundlach KM, Whitney AM, Gulvik CA, Bell ME, Rendueles O, Cury J, Hugon P, Clermont D, Enouf V, Loparev V, Juieng P, Monson T, Warshauer D, Elbadawi LI, Walters MS, Crist MB, Noble-Wang J, Borlaug G, Rocha EPC, Criscuolo A, Touchon M, Davis JP, Holt KE, McQuiston JR, Brisse S (2017) Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun 8:15483. doi:10.1038/ncomms15483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Oren A, Zhang YZ (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196(12):2210–2215. doi:10.1128/JB.01688-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramanan P, Razonable RR (2013) Elizabethkingia species sepsis after lung transplantation: case report and literature review. Transpl Infect Dis 15(6):E229–E234. doi:10.1111/tid.12146

    Article  CAS  PubMed  Google Scholar 

  • Ratnamani MS, Rao R (2013) Elizabethkingia meningoseptica: emerging nosocomial pathogen in bedside hemodialysis patients. Indian J Crit Care Med 17(5):304–307. doi:10.4103/0972-5229.120323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131. doi:10.1073/pnas.0906412106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossello-Mora R, Amann R (2015) Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 38(4):209–216. doi:10.1016/j.syapm.2015.02.001

    Article  PubMed  Google Scholar 

  • Schleifer KH, Amann R, Rossello-Mora R (2015) Taxonomy in the age of genomics. Introduction. Syst Appl Microbiol 38(4):207–208. doi:10.1016/j.syapm.2015.05.002

    Article  PubMed  Google Scholar 

  • Shewmaker PL, Steigerwalt AG, Nicholson AC, Carvalho Mda G, Facklam RR, Whitney AM, Teixeira LM (2011) Reevaluation of the taxonomic status of recently described species of Enterococcus: evidence that E. thailandicus is a senior subjective synonym of “E. sanguinicola” and confirmation of E. caccae as a species distinct from E. silesiacus. J Clin Microbiol 49(7):2676–2679. doi:10.1128/JCM.00399-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. doi:10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutcliffe IC (2015) Challenging the anthropocentric emphasis on phenotypic testing in prokaryotic species descriptions: rip it up and start again. Front Genet 6:218. doi:10.3389/fgene.2015.00218

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teo J, Tan SY, Liu Y, Tay M, Ding Y, Li Y, Kjelleberg S, Givskov M, Lin RT, Yang L (2014) Comparative genomic analysis of malaria mosquito vector-associated novel pathogen Elizabethkingia anophelis. Genome Biol Evol 6(5):1158–1165. doi:10.1093/gbe/evu094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson CC, Amaral GR, Campeao M, Edwards RA, Polz MF, Dutilh BE, Ussery DW, Sawabe T, Swings J, Thompson FL (2015) Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 197(3):359–370. doi:10.1007/s00203-014-1071-2

    Article  CAS  PubMed  Google Scholar 

  • Treangen TJ, Ondov BD, Koren S, Phillippy AM (2014) The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 15(11):524. doi:10.1186/PREACCEPT-2573980311437212

    Article  PubMed  PubMed Central  Google Scholar 

  • Ursing J, Bruun B (1987) Genetic heterogeneity of Flavobacterium meningosepticum demonstrated by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand 95(1):33–39

    CAS  Google Scholar 

  • Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Res 43(14):6761–6771. doi:10.1093/nar/gkv657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PA, Kandler O, Krichevsky MI, Moore LH, Moore WE, Murray R, Stackebrandt ES, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464. doi:10.1099/00207713-37-4-463

    Article  Google Scholar 

  • Whitman WB (2015) Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol 38(4):217–222. doi:10.1016/j.syapm.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N (1983) Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-Nonfermenting Gram-Negative Rods in CDC Groups IIK-2 and IIb. Int J Syst Bacteriol 33(3):580–598. doi:10.1099/00207713-33-3-580

    Article  Google Scholar 

  • Young SM, Lingam G, Tambyah PA (2014) Elizabethkingia Meningoseptica Engodenous Endophthalmitis—a case report. Antimicrob Resist Infect Control 3(1):35. doi:10.1186/2047-2994-3-35

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank John McInroy for providing strain JM-87, and the State Health Departments of Wisconsin, Minnesota, Illinois, Michigan, Florida, Arizona, Texas, South Carolina, and California in the USA for providing Elizabethkingia clinical specimens. We also thank Aharon Oren for nomenclature advice, Barry Holmes for supplying phenotypic data on some of the strains included in this study, and Aaron Villarma for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainsley C. Nicholson.

Ethics declarations

Funding

CDC research was supported by the Advanced Molecular Detection (AMD) initiative, and work done at the Institut Pastuer was funded by the French government’s Investissement d’Avenir program Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (Grant ANR-10-LABX-62-IBEID).

Conflict of interest

All authors report that they have no conflicts of interest.

Additional information

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicholson, A.C., Gulvik, C.A., Whitney, A.M. et al. Revisiting the taxonomy of the genus Elizabethkingia using whole-genome sequencing, optical mapping, and MALDI-TOF, along with proposal of three novel Elizabethkingia species: Elizabethkingia bruuniana sp. nov., Elizabethkingia ursingii sp. nov., and Elizabethkingia occulta sp. nov.. Antonie van Leeuwenhoek 111, 55–72 (2018). https://doi.org/10.1007/s10482-017-0926-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0926-3

Keywords

Navigation