Skip to main content
Log in

The N-terminal and central domain of colicin A enables phage lysin to lyse Escherichia coli extracellularly

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Multidrug-resistant Escherichia coli has seriously threatened antibiotic resources and international public health. Bacteriophage lysin preparations have been widely considered as valid agents for solving multidrug resistances. Many lysins have been derived to treat diseases caused by Gram-positive bacteria, but only a few lysin preparations have been found that successively treat diseases caused by Gram-negative bacteria. The outer membrane of Gram-negative bacteria effectively blocks the interactions between peptidoglycan in the periplasmic space and bacteriophage lysins, which therefore hampers the antimicrobial effects of bacteriophage lysins. In this study, a new fusion protein (Colicin-Lysep3) was constructed by fusing the translocation and receptor binding domains of colicin A with an E. coli phage lysin, which endows Colicin-Lysep3 bactericidal activity against E. coli from outside of Gram-negative bacteria. These results show that Colicin-Lysep3 could lyse the E. coli broadly in vitro and significantly reduce the number of E. coli in an intestinal infection mouse model. Overall, our findings first demonstrated that a colicin A fragment could enable a bacteriophage lysin to lyse E. coli from the outside, promoting the application of phage lysin preparations in control of Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bardhan P, Faruque AS, Naheed A, Sack DA (2010) Decrease in Shigellosis-related deaths without Shigella spp.-specific interventions. Asia. Emerg Infect Dis 16:1718–1723

    Article  PubMed  Google Scholar 

  • Braun V, Pilsl H, Gross P (1994) Colicins: structures, modes of action, transfer through membranes, and evolution. Arch Microbiol 161:199–206

    Article  CAS  PubMed  Google Scholar 

  • Briers Y, Lavigne R (2015) Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol 10:377–390

    Article  CAS  PubMed  Google Scholar 

  • Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, Oliveira H, Azeredo J, Verween G, Pirnay JP, Miller S, Volckaert G, Lavigne R (2014) Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio 5:e01379-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Nelson D, Zhu S, Fischetti VA (2005) Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother 49:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A, Fauvart M, Michiels J, Lavigne R, Briers Y (2016) Efficacy of Artilysin Art-175 against resistant and persistent Acinetobacter baumannii. Antimicrob Agents Chemother 60:3480–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehkordi FS, Yazdani F, Mozafari J, Valizadeh Y (2014) Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products. BMC Res Notes 7:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage-derived proteins–application approaches. Curr Med Chem 22:1757–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11:393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knibiehler M, Howard SP, Baty D, Geli V, Lloubès R, Sauve P, Lazdunski C (1989) Isolation and molecular and functional properties of the amino-terminal domain of colicin A. Eur J Biochem 181:109–113

    Article  CAS  PubMed  Google Scholar 

  • Lazdunski CJ, Bouveret E, Rigal A, Journet L, Lloubès R, Bénédetti H (1998) Colicin import into Escherichia coli cells. J Bacteriol 180:4993–5002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazdunski C, Bouveret E, Rigal A, Journet L, Lloubès R, Bénédetti H (2000) Colicin import into Escherichia coli cells requires the proximity of the inner and outer membranes and other factors. Int J Med Microbiol 290:337–344

    Article  CAS  PubMed  Google Scholar 

  • Lim JA, Shin H, Kang DH, Ryu S (2012) Characterization of endolysin from a Salmonella Typhimurium-infecting bacteriophage SPN1S. Res Microbiol 163:233–241

    Article  CAS  PubMed  Google Scholar 

  • Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172

    Article  CAS  PubMed  Google Scholar 

  • Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW, Schuch R, Fischetti VA (2015) Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother 59:1983–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukacik P, Barnard TJ, Buchanan SK (2012a) Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis. Biochem Soc Trans 40:1503–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, Hinnebusch BJ, Buchanan SK (2012b) Structural engineering of a phage lysin that targets gram-negative pathogens. Proc Natl Acad Sci USA 109:9857–9862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv M, Wang S, Yan G, Sun C, Feng X, Gu J, Han W, Lei L (2015) Genome sequencing and analysis of an Escherichia coli phage vB_EcoM-ep3 with a novel lysin, Lysep3. Virus Genes 50:487–497

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Guo Z, Gao C, Zhu R, Wang S, Yu L, Qin W, Xia X, Gu J, Yan G, Lei L (2017) Enhancement of the direct antimicrobial activity of Lysep3 against Escherichia coli by inserting cationic peptides into its C terminus. Antonie Van Leeuwenhoek 110:347–355

    Article  CAS  PubMed  Google Scholar 

  • Majeed H, Gillor O, Kerr B, Riley MA (2011) Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J 5:71–81

    Article  PubMed  Google Scholar 

  • Moradpour Z, Ghasemian A (2011) Modified phages: novel antimicrobial agents to combat infectious diseases. Biotechnol Adv 29:732–738

    Article  CAS  PubMed  Google Scholar 

  • Morlon J, Lloubes R, Chartier M, Bonicel J, Lazdunski C (1983a) Nucleotide sequence of promoter, operator and amino-terminal region of caa, the structural gene of colicin A. EMBO J 2:787–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morlon J, Lloubès R, Varenne S, Chartier M, Lazdunski C (1983b) Complete nucleotide sequence of the structural gene for colicin A, a gene translated at non-uniform rate. J Mol Biol 170:271–285

    Article  CAS  PubMed  Google Scholar 

  • Nandanwar N, Janssen T, Kühl M, Ahmed N, Ewers C, Wieler LH (2014) Extraintestinal pathogenic Escherichia coli (ExPEC) of human and avian origin belonging to sequence type complex 95 (STC95) portray indistinguishable virulence features. Int J Med Microbiol 304:835–842

    Article  CAS  PubMed  Google Scholar 

  • Narciso-da-Rocha C, Manaia CM (2016) Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water. Sci Total Environ 563–564:1–9

    Article  PubMed  Google Scholar 

  • Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA 98:4107–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira H, Vilas Boas D, Mesnage S, Kluskens LD, Lavigne R, Sillankorva S, Secundo F, Azeredo J (2016) Structural and enzymatic characterization of ABgp46, a novel phage endolysin with broad anti-gram-negative bacterial activity. Front Microbiol 7:208

    PubMed  PubMed Central  Google Scholar 

  • Pavlickova S, Klancnik A, Dolezalova M, Mozina SS, Holko I (2017) Antibiotic resistance, virulence factors and biofilm formation ability in Escherichia coli strains isolated from chicken meat and wildlife in the Czech Republic. J Environ Sci Health B 11:1–7

    Google Scholar 

  • Pires DP, Vilas Boas D, Sillankorva S, Azeredo J (2015) Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. J Virol 89:7449–7456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotka M, Kaczorowska AK, Morzywolek A et al (2015) Biochemical characterization and validation of a catalytic site of a highly thermostable Ts2631 endolysin from the thermus scotoductus phage vB_Tsc2631. PLoS ONE 10:e0137374

    Article  PubMed  PubMed Central  Google Scholar 

  • Qadir MI (2015) Review: phage therapy: a modern tool to control bacterial infections. Pak J Pharm Sci 28:265–270

    PubMed  Google Scholar 

  • Sande-Bruinsma NVD, Grundmann H, Verloo D, Tiemersma E, Monen J (2008) Antimicrobial drug use and resistance in Europe. Emerg Infect Dis 14:1722–1730

    Article  PubMed  PubMed Central  Google Scholar 

  • Thandar M, Lood R, Winer BY, Deutsch DR, Euler CW, Fischetti VA (2016) Novel engineered peptides of a phage lysin as effective antimicrobials against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 60:2671–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner SM, Scott-Tucker A, Cooper LM, Henderson IR (2006) Weapons of mass destruction: virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol Lett 263:10–20

    Article  CAS  PubMed  Google Scholar 

  • Walmagh M, Boczkowska B, Grymonprez B, Briers Y, Drulis-Kawa Z, Lavigne R (2013) Characterization of five novel endolysins from Gram-negative infecting bacteriophages. Appl Microbiol Biotechnol 97:4369–4375

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Baran PS (2016) Drug discovery: fighting evolution with chemical synthesis. Nature 533:326–327

    Article  CAS  PubMed  Google Scholar 

  • Young R, Gill JJ (2015) MICROBIOLOGY. phage therapy redux–What is to be done? Science 350:1163–1164

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by funds from the National Key Basic Research Program of China (No. 2013CB127205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liancheng Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Mice were purchased from the Animal Experiment Center of Jilin University. All animal research was conducted according to the experimental practices and standards approved by the Animal Welfare and Research Committee at Jilin University (Approval ID: 20100926-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, G., Liu, J., Ma, Q. et al. The N-terminal and central domain of colicin A enables phage lysin to lyse Escherichia coli extracellularly. Antonie van Leeuwenhoek 110, 1627–1635 (2017). https://doi.org/10.1007/s10482-017-0912-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0912-9

Keywords

Navigation