Advertisement

Antonie van Leeuwenhoek

, Volume 110, Issue 11, pp 1377–1387 | Cite as

Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H

  • Angela Casillo
  • Jonas Ståhle
  • Ermenegilda Parrilli
  • Filomena Sannino
  • Daniel E. Mitchell
  • Giuseppina Pieretti
  • Matthew I. Gibson
  • Gennaro Marino
  • Rosa Lanzetta
  • Michelangelo Parrilli
  • Göran Widmalm
  • Maria L. Tutino
  • Maria M. CorsaroEmail author
Original Paper

Abstract

Colwellia psychrerythraea strain 34H, a Gram-negative bacterium isolated from Arctic marine sediments, is considered a model to study the adaptation to cold environments. Recently, we demonstrated that C. psychrerythraea 34H produces two different extracellular polysaccharides, a capsular polysaccharide and a medium released polysaccharide, which confer cryoprotection to the bacterium. In this study, we report the structure of an additional capsular polysaccharide produced by Colwellia grown at a different temperature. The structure was determined using chemical methods, and one- and two-dimensional NMR spectroscopy. The results showed a trisaccharide repeating unit made up of only amino-sugar residues: N-acetyl-galactosamine, 2,4-diacetamido-2,4,6-trideoxy-glucose (bacillosamine), and 2-acetamido-2-deoxyglucuronic acid with the following structure: →4)-β-d-GlcpNAcA-(1 →3)-β-d-QuipNAc4NAc-(1 →3)-β-d-GalpNAc-(1 →. The 3D model, generated in accordance with 1H,1H-NOE NMR correlations and consisting of ten repeating units, shows a helical structure. In contrast with the other extracellular polysaccharides produced from Colwellia at 4 °C, this molecule displays only a low ice recrystallization inhibition activity.

Keywords

Cold adaptation Extracellular polysaccharides NMR Psychrophile Anti-freeze activity 

Notes

Acknowledgements

This work was supported by Grants from the Swedish Research Council and the Knut and Alice Wallenberg Foundation.

References

  1. Bakermans C, Nealson KH (2004) Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol 186:2340–2345CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bock K, Pedersen C (1983) Carbon-13 nuclear resonance spectroscopy of monosaccharides. Adv Carbohyd Chem Biochem 41:27–66CrossRefGoogle Scholar
  3. Bowman JP (2014) The family Colwelliaceae. In: Rosenberg E (ed) The prokaryotes: Gammaproteobacteria. Springer, Berlin, Heidelberg, pp 179–193Google Scholar
  4. Carillo S, Pieretti G, Lindner B et al (2013) Structural characterization of the core oligosaccharide isolated from the lipopolysaccharide of the psychrophilic bacterium Colwellia psychrerythraea strain 34H. Eur J Org Chem 18:3771–3779CrossRefGoogle Scholar
  5. Carillo S, Casillo A, Pieretti G et al (2015) A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (Glyco)proteins. J Am Chem Soc 137:179–189CrossRefPubMedGoogle Scholar
  6. Casillo A, Parrilli E, Sannino F et al (2017) Structure-activity relationship of the exopolysaccharide from a psychrophilic bacterium: a strategy for cryoprotection. Carbohydr Polym 156:364–371CrossRefPubMedGoogle Scholar
  7. Cavicchioli R, Thomas T (2000) Extremophiles. In: Lederberg J, Alexander M, Bloom BR, Hopwood D, Hull R, Iglewski BH, Laskin AI, Oliver SG, Schaechter M, Summers WC (eds) Encylopedia of microbiology, 2nd edn. Academic Press Inc, San Diego, pp 317–337Google Scholar
  8. Congdon TC, Notman R, Gibson MI (2013) Antifreeze (Glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study. Biomacromolecules 14(5):1578–1586CrossRefPubMedGoogle Scholar
  9. Corsaro MM, Grant WD, Grant S, Marciano CE, Parrilli M (1999) Structure determination of an exopolysaccharide from an alkaliphilic bacterium closely related to Bacillus spp. Eur J Biochem 264:554–561CrossRefPubMedGoogle Scholar
  10. D’Alonzo D, Cipolletti M, Tarantino G et al (2016) A semisynthetic approach to new immunoadjuvant candidates: site-selective chemical manipulation of Escherichia coli monophosphoryl lipid A. Chem Eur J 22:1–12CrossRefGoogle Scholar
  11. De Mayeer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517CrossRefGoogle Scholar
  12. de Pinto MC, Lavermicocca P, Evidente A, Corsaro MM, Lazzaroni S, De Gara L (2003) Exopolysaccharides produced by plant pathogenic bacteria affect ascorbate metabolism in Nicotiana tabacum. Plant Cell Physiol 44:803–810CrossRefPubMedGoogle Scholar
  13. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. In: Barnes M (ed) Oceanography and marine biology: an annual review. Aberdeen Univ Press, UK, pp 73–153Google Scholar
  14. Deming JW, Somers LK, Straube WL et al (1988) Isolation of an obligately barophilc bacterium and description of a new genus Colwellia gen. nov. Syst Appl Microbiol 10:152–160CrossRefGoogle Scholar
  15. Dixon AM, Venable R, Widmalm G, Bull TE, Pastor RW (2003) Application of NMR, Molecular simulation, and hydrodynamics to conformational analysis of trisaccharides. Biopolymers 69(4):448–460CrossRefPubMedGoogle Scholar
  16. Ewert M, Deming JW (2013) Sea ice microorganisms: environmental constraints and extracellular responses. Biology 2:603–628CrossRefPubMedPubMedCentralGoogle Scholar
  17. Findeisen M, Brand T, Berger S (2007) A 1H-NMR thermometer suitable for cryoprobes. Magn Reson Chem 45:175–178CrossRefPubMedGoogle Scholar
  18. Fux CA, Stoodley P, Hall-Stoodley L (2003) Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther 1:667–683CrossRefPubMedGoogle Scholar
  19. Galanos C, Lüderitz O, Westphal O (1969) A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9:245–249CrossRefPubMedGoogle Scholar
  20. Huston AL, Methè BA, Deming JW (2004) Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl Environ Microb 70:3321–3328CrossRefGoogle Scholar
  21. Jansson P, Kenne L, Widmalm G (1989) Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H- and 13C-N.M.R. data. Carbohyd Res 188:169–191CrossRefGoogle Scholar
  22. Jansson P, Kenne L, Widmalm G (1991) CASPER: a computer program used for structural analysis of carbohydrates. J Chem Inf Comput Sci 31:508–516CrossRefPubMedGoogle Scholar
  23. Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288–301CrossRefPubMedGoogle Scholar
  24. Kokoulin MS, Komandrova NA, Kalinovskiy AI, Tomshich SV, Romanenko LA, Vaskovsky VV (2015) Structure of the O-specific polysaccharide from the deep-sea marine bacterium Idiomarina abyssalis КMM 227T containing a 2-O-sulfate-3-N-(4-hydroxybutanoyl)-3,6-dideoxy-d-glucose. Carbohyd Res 413:100–106CrossRefGoogle Scholar
  25. Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microb 47:103–117CrossRefGoogle Scholar
  26. Kuttel MM, Ståhle J, Widmalm G (2016) CarbBuilder: software for building molecular models of complex oligo- and polysaccharide structures. J Comput Chem 37:2098–2105CrossRefPubMedGoogle Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  28. Leontein K, Lindberg B, Lönngren J (1978) Assignment of absolute configuration of sugar by g.l.c. of their acetylated glycosides from chiral alcohols. Carbohydr Res 62:359–362CrossRefGoogle Scholar
  29. Lipkind GM, Shashkov AS, Knirel YA, Vinogradov E, Kochetkov NK (1988) A computer-assisted structural analysis of regular polysaccharides on the basis of 13C-NMR data. Carbohyd Res 175:59–75CrossRefGoogle Scholar
  30. Liu SB, Chen XL, He HL et al (2013) Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. Strain SM20310. Appl Environ Microb 79(1):224–230CrossRefGoogle Scholar
  31. Lundborg M, Widmalm G (2011) Structural analysis of glycans by NMR chemical shift prediction. Anal Chem 83:1514–1517CrossRefPubMedGoogle Scholar
  32. Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnology 7:253–271CrossRefGoogle Scholar
  33. Methé BA, Nelson KE, Deming JW et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pieretti G, Corsaro MM, Lanzetta R et al (2009) Structure of the core region from the lipopolysaccharide of Plesiomonas shigelloides Strain 302-73 (Serotype O1). Eur J Org Chem 2009:1365–1371CrossRefGoogle Scholar
  35. Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sarkar A, Fontana C, Imberty A, Pérez S, Widmalm G (2013) Conformational preferences of the O-antigen polysaccharides of Escherichia coli O5ac and O5ab using NMR spectroscopy and molecular modeling. Biomacromolecules 14:2215–2224CrossRefPubMedGoogle Scholar
  37. Schäffer C, Scherf T, Christian R, Kosma P, Zayni S, Messner P, Sharon N (2001) Purification and structure elucidation of the N-acetylbacillosamine-containing polysaccharide from Bacillus licheniformis ATCC 9945. Eur J Biochem 268:857–864CrossRefPubMedGoogle Scholar
  38. Söderman P, Jansson P, Widmalm G (1998) Synthesis, NMR spectroscopy and conformational studies of the four anomeric methyl glycosides of the trisaccharide D-Glcp-(1 → 3)-[D-Glcp-(1 → 4)]-α-D-Glcp. J Chem Soc Perkin Trans 2, 639–648Google Scholar
  39. Sutherland IW (1982) Biosynthesis of microbial exopolysaccharides. Adv Microb Phys 23:79–150CrossRefGoogle Scholar
  40. Westphal O (1965) Bacterial lipopolysaccharide-extraction with phenol water and further application of procedure. Methods Carbohydr Chem 5:83–91Google Scholar
  41. Widmalm G (2007) General NMR spectroscopy of carbohydrates and conformational analysis in solution. In Comprehensive glycoscience, J. P. Kamerling, Ed., Elsevier, Oxford, Vol. 2, pp. 101–132Google Scholar
  42. Yang M, Angles d’Ortoli T, Säwén E, Jana M, Widmalm G, MacKerell AD Jr (2016) Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations. Phys Chem Chem Phys 18:18776–18794CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Angela Casillo
    • 1
  • Jonas Ståhle
    • 2
  • Ermenegilda Parrilli
    • 1
  • Filomena Sannino
    • 1
  • Daniel E. Mitchell
    • 3
  • Giuseppina Pieretti
    • 1
  • Matthew I. Gibson
    • 3
  • Gennaro Marino
    • 1
  • Rosa Lanzetta
    • 1
  • Michelangelo Parrilli
    • 4
  • Göran Widmalm
    • 2
  • Maria L. Tutino
    • 1
  • Maria M. Corsaro
    • 1
    Email author
  1. 1.Department of Chemical SciencesUniversity of Naples “Federico II”NaplesItaly
  2. 2.Department of Organic ChemistryArrhenius Laboratory, Stockholm UniversityStockholmSweden
  3. 3.Department of Chemistry and Warwick Medical SchoolUniversity of WarwickCoventryUK
  4. 4.Department of BiologyUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations