Antonie van Leeuwenhoek

, Volume 110, Issue 4, pp 593–605 | Cite as

Nature of the interactions between hypocrealean fungi and the mutualistic fungus of leaf-cutter ants

  • Sadala Schmidt Varanda-Haifig
  • Tatiane Regina Albarici
  • Pablo Henrique Nunes
  • Ives Haifig
  • Paulo Cezar Vieira
  • Andre Rodrigues
Original Paper

Abstract

Leaf-cutter ants cultivate and feed on the mutualistic fungus, Leucoagaricus gongylophorus, which is threatened by parasitic fungi of the genus Escovopsis. The mechanism of Escovopsis parasitism is poorly understood. Here, we assessed the nature of the antagonism of different Escovopsis species against its host. We also evaluated the potential antagonism of Escovopsioides, a recently described fungal genus from the attine ant environment whose role in the colonies of these insects is unknown. We performed dual-culture assays to assess the interactions between L. gongylophorus and both fungi. We also evaluated the antifungal activity of compounds secreted by the latter on L. gongylophorus growth using crude extracts of Escovopsis spp. and Escovopsioides nivea obtained either in (1) absence or (2) presence of the mutualistic fungus. The physical interaction between these fungi and the mutualistic fungus was examined under scanning electron microscopy (SEM). Escovopsis spp. and E. nivea negatively affected the growth of L. gongylophorus, which was also significantly inhibited by both types of crude extract. These results indicate that Escovopsis spp. and E. nivea produce antifungal metabolites against the mutualistic fungus. SEM showed that Escovopsis spp. and E. nivea maintained physical contact with the mutualistic fungus, though no specialised structures related to mycoparasitism were observed. These results showed that Escovopsis is a destructive mycoparasite that needs physical contact for the death of the mutualistic fungus to occur. Also, our findings suggest that E. nivea is an antagonist of the ant fungal cultivar.

Keywords

Antagonism Mycoparasitism Tribe Attini Hypocreales 

References

  1. Augustin JO, Groenewald JZ, Nascimento RJ, Mizubuti ESG, Barreto RW, Elliot SL, Evans HC (2013) Yet more ‘‘weeds’’ in the garden: fungal novelties from nests of leaf-cutting ants. PLoS One 8:e82265. doi:10.1371/journal.pone.0082265 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barnett HL (1964) Mycoparasitism. Mycologia 56:1–19CrossRefGoogle Scholar
  3. Birnbaum SL, Gerardo NL (2016) Patterns of specificity of the pathogen Escovopsis across the fungus-growing ant symbiosis. Am Nat 188:52–65. doi:10.1086/686911 CrossRefPubMedGoogle Scholar
  4. Carreiro SC, Pagnocca FC, Bueno OC, Bacci M Jr, Hebling MJA, Silva OA (1997) Yeast associated with nests of the leaf-cutting ant Atta sexdens rubropilosa Forel, 1908. Anton Leeuw Int J G 71:243–248. doi:10.1023/A:1000182108648 CrossRefGoogle Scholar
  5. Currie CR (2001) A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380. doi:10.1146/annurev.micro.55.1.357 CrossRefPubMedGoogle Scholar
  6. Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B 268:1033–1039. doi:10.1098/rspb.2001.1605 CrossRefGoogle Scholar
  7. Currie CR, Mueller UG, Malloch D (1999) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002. doi:10.1073/pnas.96.14.7998 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Muller UG, Sung GH, Spatafora JW, Straus NA (2003) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299:386–388. doi:10.1126/science.1078155 CrossRefPubMedGoogle Scholar
  9. Elizondo-Wallace DE, Vargas-Ansesio JG, Pinto-Tomás AA (2014) Correlation between virulence and genetic structure of Escovopsis strains from leaf-cutting ant colonies in Costa Rica. Microbiology 160:1727–1736. doi:10.1099/mic.0.073593-0 CrossRefGoogle Scholar
  10. Folgarait P, Gorosito N, Poulsen M, Currie CR (2011a) Preliminary in vitro insights into the use of natural fungal patoghens of leaf-cutting as biocontrol agents. Curr Microbiol 63:250–258. doi:10.1007/s00284-011-9944-y CrossRefPubMedGoogle Scholar
  11. Folgarait PJ, Marfetán JA, Cafaro MJ (2011b) Growth and conidiation response of Escovopsis weberi (Ascomycota:Hypocreales) against the fungal cultivar of Acromyrmex lundii (Hymenoptera:Formicidae). Environ Entomol 40:342–349. doi:10.1603/EN10111 CrossRefGoogle Scholar
  12. Gerardo NM, Mueller UG, Price SL, Currie CR (2004) Exploiting a mutualism: parasite specialization on cultivars within the fungus-growing ant symbiosis. Proc R Soc Lond B 1550:1791–1798. doi:10.1098/rspb.2004.2792 CrossRefGoogle Scholar
  13. Gerardo NM, Jacobs SR, Currie CR, Mueller UG (2006) Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis. PLoS Biol 4:e235. doi:10.1371/journal.pbio.0040235 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jeffries P (1995) Biology and ecology of mycoparasitism. Can J Bot 73:1284–1290CrossRefGoogle Scholar
  15. Man TJB, Stajich JE, Kubicek CP, Teiling C, Chenthamara K, Atanasova L, Druzhinina IS, Levenkova N, Birnbaum SSL, Barribeau SM, Bozick BA, Suen G, Currie CR, Gerardo NM (2016) Small genome of the fungus Escovopsis weberi, a specialized disease agent of ant agriculture. Proc Natl Acad Sci USA 113:3567–3572. doi:10.1073/pnas.1518501113 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Marfetán JA, Romero AI, Folgarait PJ (2015) Pathogenic interaction between Escovopsis weberi and Leucoagaricus sp.: mechanisms involved and virulence levels. Fungal Ecol 17:52–61. doi:10.1016/j.funeco.2015.04.002 CrossRefGoogle Scholar
  17. Meirelles LA, Solomon SE, Jr Bacci, Wright AM, Mueller UG, Rodrigues A (2015) Shared Escovopsis parasites between leaf-cutting and non-leaf-cutting ants in the higher attine fungus-growing ant symbiosis. R Soc Open Sci 2:150257. doi:10.1098/rsos.150257 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Möller A (1893) Die Pilzgärten einiger südamerikanischer Ameisen. Bot Mitt Tropen 6:1–127Google Scholar
  19. Pagnocca FC, Silva OA, Hebling-Beraldo MJ, Bueno OC, Fernandes JB, Vieira PC (1990) Toxicity of sesame extracts to the symbiotic fungus of leaf-cutting ants. Bull Entomol Res 80:349–352CrossRefGoogle Scholar
  20. Pagnocca FC, Masiulionis VE, Rodrigues A (2012) Specialized fungal parasites and opportunistic fungi in gardens of attine ants. Psyche 12:1–9. doi:10.1155/2012/905109 CrossRefGoogle Scholar
  21. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  22. Reis BMS, Silva A, Alvarez MR, Oliveira TB, Rodrigues A (2015) Fungal communities in gardens of the leafcutter ant Atta cephalotes in forest and cabruca agrosystems of southern Bahia State (Brazil). Fungal Biol 119:1170–1178. doi:10.1016/j.funbio.2015.09.001 CrossRefPubMedGoogle Scholar
  23. Reynolds HT, Currie CR (2004) Pathogenicity of Escovopsis weberi: the parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96:955–959CrossRefPubMedGoogle Scholar
  24. Rodrigues A, Pagnocca FC, Bacci M Jr, Hebling MJA, Bueno OC, Pfenning LH (2005) Variability of non-mutualist fungi associated with Atta sexdens rubropilosa nests. Folia Microbiol 50:421–425CrossRefGoogle Scholar
  25. Rodrigues A, Bacci M Jr, Mueller UG, Ortiz A, Pagnocca FC (2008) Microfungal “weeds” in the leafcutter ant symbiosis. Microb Ecol 56:604–614. doi:10.1007/s00248-008-9380-0 CrossRefPubMedGoogle Scholar
  26. Rodrigues A, Cable RN, Mueller UG, Bacci M Jr, Pagnocca FC (2009) Antagonistic interactions between garden yeast and microfungal garden pathogens of leaf-cutting ants. Anton Leeuw Int J G 96:331–342. doi:10.1007/s10482-009-9350-7 CrossRefGoogle Scholar
  27. Santos AV, Dillon RJ, Dillon VM, Reynolds SE, Samuels RJ (2004) Occurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol Lett 239:319–323. doi:10.1016/j.femsle.2004.09.005 CrossRefPubMedGoogle Scholar
  28. Savoie JM, Mata G, Billette C (1998) Extracellular laccase production during hyphal interactions between Trichoderma sp. and shiitake, Lentinula edodes. Appl Microbiol Biotechnol 49:589–593. doi:10.1007/s002530051218 CrossRefGoogle Scholar
  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089 CrossRefPubMedGoogle Scholar
  30. Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105:5435–5440. doi:10.1073/pnas.0711024105 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, Mueller UG (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci USA 106:17805–17810. doi:10.1073/pnas.0904827106 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Silva A, Rodrigues A, Bacci M Jr, Pagnocca FC, Bueno OC (2006) Susceptibility of the ant-cultivated fungus Leucoagaricus gongylophorus (Agaricales: Basidiomycota) towards microfungi. Mycopathologia 162:115–119. doi:10.1007/s11046-006-0037-6 CrossRefPubMedGoogle Scholar
  33. Suen G, Scott JJ, Aylward FO, Adams SM, Tringe SG, Pinto-Tomás AA, Foster CE, Pauly M, Weimer PJ, Barry KW, Goodwin LA, Bouffard P, Li L, Osterberger J, Harkins TT, Slater SC, Donohue TJ, Currie CR (2010) An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet 6:e1001129. doi:10.1371/journal.pgen.1001129 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tsujiyama S, Minami M (2005) Production of phenol-oxidizing enzymes in the interaction between white-rot fungi. Mycoscience 46:268–271. doi:10.1007/s10267-005-0243-y CrossRefGoogle Scholar
  35. Weber NA (1972) Gardening ants, the Attines. American Philosophical Society, PhiladelphiaGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departamento de Bioquímica e MicrobiologiaUniversidade Estadual Paulista (UNESP)Rio ClaroBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de São CarlosSão CarlosBrazil
  3. 3.Centro Interdisciplinar de Ciências da VidaUniversidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil
  4. 4.Instituto de Ciências AgráriasUniversidade Federal de UberlândiaMonte CarmeloBrazil

Personalised recommendations