Skip to main content
Log in

Identification and genomic analysis of antifungal property of a tomato root endophyte Pseudomonas sp. p21

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Pseudomonas sp., which occupy a variety of ecological niches, have been widely studied for their versatile metabolic capacity to promote plant growth, suppress microbial pathogens, and induce systemic resistance in plants. In this study, a Pseudomonas sp. strain p21, which was isolated from tomato root endophytes, was identified as having antagonism against Aspergillus niger. Further analysis showed that this strain had the ability to biosynthesise siderophores and was less effective in inhibiting the growth of A. niger with the supplementation of Fe3+ in the agar medium. Genomic sequencing and the secondary metabolite cluster analysis demonstrated that Pseudomonas sp. p21 harboured 2 pyoverdine biosynthetic gene clusters, which encode compounds with predicted core structures and two variable tetra-peptide or eleven-peptide chains. The results indicated that siderophore-mediated competition for iron might be an important mechanism in Pseudomonas suppression of the fungal pathogen A. niger and in microbe-pathogen-plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microbial Biotechnol 7(3):196–208

    Article  CAS  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fert Soils 12(1):39–45

    Article  CAS  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9(1):75

    Article  Google Scholar 

  • Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. Microbial root endophytes. Springer, Berlin, pp 53–69

    Chapter  Google Scholar 

  • Bodilis J, Ghysels B, Osayande J, Matthijs S, Pirnay JP, Denayer S, De Vos D, Cornelis P (2009) Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11(8):2123–2135

    Article  PubMed  Google Scholar 

  • Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27(4):578–579

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95

    Article  CAS  PubMed  Google Scholar 

  • Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21(16):3422–3423

    Article  CAS  PubMed  Google Scholar 

  • Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86(6):1637–1645

    Article  CAS  PubMed  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4(12):787–798

    Article  CAS  PubMed  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5(6):e11147

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750

    Article  PubMed  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4(1):5–13

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65(12):5357–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV, Davis EW II, Lim CK, Shaffer BT, Elbourne LD, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS III, Pierson EA, Lindow SE, Kobayashi DY, Raaijmakers JM, Weller DM, Thomashow LS, Allen AE, Paulsen IT (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8(7):e1002784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma R, Cao Y, Zhou J, Ye C, Zhang T, Chen M, Ma S, Tian B (2015) Isolation and identification of endophytic Pseudomonas from tomato roots. Biotechnology (Chinese) 06:564–568 (Abstract in English)

  • Malfanova NV (2013) Endophytic bacteria with plant growth promoting and biocontrol abilities. Leiden University, Leiden

    Google Scholar 

  • Marugg JD, Van Spanje MHWP, Hoekstra WP, Schippers B, Weisbeek PJ (1985) Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358. J Bacteriol 164(2):563–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matzanke BF (1991) Structures, coordination chemistry and functions of microbial iron chelates. CRC Handbook of microbial iron chelates, Boca Raton, pp 15–64

    Google Scholar 

  • Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucl Acids Res 39(suppl2):W339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174(3):135–142

    Article  CAS  PubMed  Google Scholar 

  • Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet—next generation sequence assembly visualization. Bioinformatics 26(3):401–402

    Article  CAS  PubMed  Google Scholar 

  • Nadalin F, Vezzi F, Policriti A (2012) GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 13(Suppl 14):S8

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808

    Article  CAS  PubMed  Google Scholar 

  • Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B 359(1446):907–918

    Article  CAS  Google Scholar 

  • Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martínez-Granero F, Barahona E, Navazo A, Sánchez-Contreras M, Moynihan JA, Muriel C, Dowling D, O’Gara F, Martín M, Rivilla R (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genom 14(1):1–17

    Article  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25(1):28–36

    Article  CAS  PubMed  Google Scholar 

  • Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680

    Article  CAS  PubMed  Google Scholar 

  • Standley K (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian BY, Yang JK, Zhang KQ (2007) Bacteria used in biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61(2):197–213

    Article  CAS  PubMed  Google Scholar 

  • Tian BY, Cao Y, Zhang KQ (2015) Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep 5:17087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genom Biol 14(6):10–1186

    Article  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007a) Pyoverdine synthesis and its regulation in fluorescent pseudomonads. Microbial Siderophores. Springer, Berlin, pp 135–163

    Chapter  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007b) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) AntiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucl Acids Res 43(W1):W237–W243

    Article  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann Rev Phytopathol 40(1):309–348

    Article  CAS  Google Scholar 

  • Ye L, Hildebrand F, Dingemans J, Ballet S, Laus G, Matthijs S, Berendsen R, Cornelis P (2014) Draft genome sequence analysis of a Pseudomonas putida W15Oct28 Strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens. PLoS ONE 9(11):e110038

    Article  PubMed  PubMed Central  Google Scholar 

  • Yunus FN, Iqbal M, Jabeen K, Kanwal Z, Rashid F (2016) Antagonistic activity of Pseudomonas fluorescens against fungal plant pathogen Aspergillus niger. Sci Lett 4(1):66–70

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Basic Research Program of China (973) (2013CB127504), the National Natural Science Foundation of China (Nos. 31170108; 31670125) and the Department of Science and Technology of Fujian Province (No. 2014J01111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyu Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Rongqin Ma and Yi Cao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Cao, Y., Cheng, Z. et al. Identification and genomic analysis of antifungal property of a tomato root endophyte Pseudomonas sp. p21. Antonie van Leeuwenhoek 110, 387–397 (2017). https://doi.org/10.1007/s10482-016-0811-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0811-5

Keywords

Navigation