Skip to main content
Log in

Mutagenesis of nisin’s leader peptide proline strongly modulates export of precursor nisin

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The lantibiotic nisin is produced by Lactococcus lactis as a precursor peptide comprising a 23 amino acid leader peptide and a 34 amino acid post-translationally modifiable core peptide. We previously demonstrated that the conserved FNLD part of the leader is essential for intracellular enzyme-catalyzed introduction of lanthionines in the core peptide and also for transporter-mediated export, whereas other positions are subject to large mutational freedom. We here demonstrate that, in the absence of the extracellular leader peptidase, NisP, export of precursor nisin via the modification and transporter enzymes, NisBTC, is strongly affected by multiple substitutions of the leader residue at position -2, but not by substitution of positions in the vicinity of this site. Export levels of precursor nisin increased by more than 70% for position -2 mutants Asp, Thr, Ser, Trp, Lys, Val and decreased more than 70% for Cys, His, Met. In a strain with leader peptidase, the Pro-2Lys and Pro-2Asp precursor nisins were less efficiently cleaved by NisP than wild type precursor nisin. Taken together, the wild type precursor nisin with a proline at position -2 allows balanced export and cleavage efficiencies by precursor nisin’s transporter and leader peptidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abts A, Montalban-Lopez M, Kuipers OP, Smits SH, Schmitt L (2013) NisC binds the FxLx motif of the nisin leader peptide. Biochemistry 52:5387–5395

    Article  CAS  PubMed  Google Scholar 

  • Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck-Sickinger AG, Jung G (1993) Synthesis and conformational analysis by CD spectroscopy of lantibiotic leader, pro- and pre-peptides. Liebigs Ann Chem 1993:1125–1131

    Article  Google Scholar 

  • de Vries L, Reitzema-Klein CE, Meter-Arkema A, van Dam A, Rink R, Moll GN, Akanbi MH (2010) Oral and pulmonary delivery of thioether-bridged angiotensin-(1–7). Peptides 31:893–898

    Article  PubMed  Google Scholar 

  • Durik M, Van Veghel R, Kuipers A, Rink R, Haas Jimoh Akanbi M, Moll GN, Danser AHJ, Roks AJM (2012) The effect of the thioether-bridged, stabilized angiotensin-(1–7) analogue cyclic ang-(1–7) on cardiac remodeling and endothelial function in rats with myocardial infarction. Int J Hypertens. doi:10.1155/2012/536426

    PubMed  Google Scholar 

  • Grag N, Salazar-Ocampo LM, van der Donk WA (2013) In vitro activity of the nisin dehydratase NisB. Proc Natl Acad Sci USA 110:7258–7263

    Article  Google Scholar 

  • Gross E, Morell JL (1971) The Structure of Nisin. J Am Chem Soc 93:4634–4635

    Article  CAS  PubMed  Google Scholar 

  • Holo H, Nes IF (1995) Transformation of Lactococcus by Electroporation. Methods Mol Biol 47:195–199

    CAS  PubMed  Google Scholar 

  • Khusainov R, Heils R, Lubelski J, Moll GN, Kuipers OP (2011) Determining sites of interaction between precursor nisin and its modification enzymes NisB and NisC. Mol Microbiol 82:706–718

    Article  CAS  PubMed  Google Scholar 

  • Khusainov R, Moll GN, Kuipers OP (2013) Identification of distinct nisin leader peptide regions that determine interactions with the modification enzymes NisB and NisC. FEBS Open Bio 3:237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM, Kuipers OP (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63:4581–4584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kluskens LD, Kuipers A, Rink R, de Boef E, Fekken S, Driessen AJ, Kuipers OP, Moll GN (2005) Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibiotic nisin. Biochemistry 44:12827–12834

    Article  CAS  PubMed  Google Scholar 

  • Kluskens LD, Nelemans SA, Rink R, de Vries L, Meter-Arkema A, Wang Y, Walther T, Kuipers A, Moll GN, Haas M (2009) Angiotensin-(1-7) with thioether Bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J Pharmacol Exp Ther 328:849–854

    Article  CAS  PubMed  Google Scholar 

  • Knerr PJ, van der Donk WA (2012) Discovery, biosynthesis, and engineering of lantipeptides. Annu Rev Biochem 81:479–505

    Article  CAS  PubMed  Google Scholar 

  • Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR, Willey JM (2004) The SapB morphogen is a lantibiotic–like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci USA 101:11448–11453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koponen O, Tolonen M, Qiao M, Wahlström G, Helin J, Saris PE (2002) NisB is required for the dehydration and NisC for the lanthionine formation in the post-translational modification of nisin. Microbiology 148:3561–3568

    Article  CAS  PubMed  Google Scholar 

  • Kuipers OP, de Ruyter PG, Kleerebezem M, de Vos WM (1997) Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol 15:135–140

    Article  CAS  PubMed  Google Scholar 

  • Kuipers A, de Boef E, Rink R, Fekken S, Kluskens LD, Driessen AJ, Leenhouts K, Kuipers OP, Moll GN (2004) NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and unmodified precursor nisin and fusions of the leader peptide with non-lantibiotic peptides. J Biol Chem 279:22176–22182

    Article  CAS  PubMed  Google Scholar 

  • Leenhouts K, Buist G, Bolhuis A, ten Berge A, Kiel J, Mierau I, Dabrowska M, Venema G, Kok JA (1996) General system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253:217–224

    Article  CAS  PubMed  Google Scholar 

  • Leenhouts K, Bolhuis A, Venema G, Kok J (1998) Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl Microbiol Biotechnol 49:417–423

    Article  CAS  PubMed  Google Scholar 

  • Li B, Yu JP, Brunzelle JS, Moll GN, van der Donk WA, Nair SK (2006) Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311:1464–1467

    Article  CAS  PubMed  Google Scholar 

  • Lian LY, Chan WC, Morley SD, Roberts GC, Bycroft BW, Jackson D (1992) Solution structures of nisin a and its two major degradation products determined by NMR. Biochem J 283:413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65:455–476

    Article  CAS  PubMed  Google Scholar 

  • Mavaro A, Abts A, Bakkes PJ, Moll GN, Driessen AJ, Smits SH, Schmitt L (2011) Substrate recognition and specificity of the NisB protein, the lantibiotic dehydratase involved in nisin biosynthesis. J Biol Chem 286:30552–30560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller WM, Ensle P, Krawczyk B, Süssmuth RD (2011) Leader peptide-directed processing of labyrinthopeptin A2 precursor peptide by the modifying enzyme LabKC. Biochemistry 50:8362–8373

    Article  PubMed  Google Scholar 

  • Nagao J, Morinaga Y, Islam MR, Asaduzzaman SM, Aso Y, Nakayama J, Sonomoto K (2009) Mapping and identification of the region and secondary structure required for the maturation of the nukacin ISK-1 prepeptide. Peptides 30:1412–1420

    Article  CAS  PubMed  Google Scholar 

  • Oman TJ, van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega MA, Hao Y, Zhang Q, Walker MC, van der Donk WA, Nair SK (2014) Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. Nature 517:509–512

    Article  PubMed  PubMed Central  Google Scholar 

  • Patton GC, Paul M, Cooper LE, Chatterjee C, van der Donk WA (2008) The importance of the leader sequence for directing lanthionine formation in lacticin 481. Biochemistry 47:7342–7351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piela L, Némethy G, Scheraga HA (1987) Proline-induced constraints in alpha-helices. Biopolymers 26:1587–1600

    Article  CAS  PubMed  Google Scholar 

  • Plat A, Kluskens LD, Kuipers A, Rink R, Moll GN (2011) Requirements of the engineered leader peptide of nisin for inducing modification, export, and cleavage. Appl Environ Microbiol 77:604–611

    Article  CAS  PubMed  Google Scholar 

  • Plat A, Kuipers A, Rink R, Moll GN (2013) Mechanistic aspects of lanthipeptide leaders. Curr Protein Pept Sci 14:85–96

    Article  CAS  PubMed  Google Scholar 

  • Rink R, Kuipers A, de Boef E, Leenhouts KJ, Driessen AJ, Moll GN, Kuipers OP (2005) Lantibiotic structures as guidelines for the design of peptides that can be modified by lantibiotic enzymes. Biochemistry 44:8873–8882

    Article  CAS  PubMed  Google Scholar 

  • Rink R, Wierenga J, Kuipers A, Kluskens LD, Driessen AJ, Kuipers OP, Moll GN (2007a) Dissection and modulation of the four distinct activities of nisin by mutagenesis of rings A and B and by C-terminal truncation. Appl Environ Microbiol 73:5809–5816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rink R, Wierenga J, Kuipers A, Kluskens LD, Driessen AJ, Kuipers OP, Moll GN (2007b) Production of dehydroamino acid-containing peptides by Lactococcus lactis. Appl Environ Microbiol 73:1792–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rink R, Arkema-Meter A, Baudoin I, Post E, Kuipers A, Nelemans SA, Akanbi MH, Moll GN (2010) To protect peptide pharmaceuticals against peptidases. J Pharmacol Toxicol Methods 61:210–218

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, p 545

    Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to IMAGEJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Schnell N, Entian KD, Schneider U, Gotz F, Zahner H, Kellner R, Jung G (1988) Precursor peptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333:276–278

    Article  CAS  PubMed  Google Scholar 

  • Siegers K, Heinzmann S, Entian KD (1996) Biosynthesis of lantibiotic nisin. Posttranslational modification of its precursor peptide occurs at a multimeric membrane-associated lanthionine synthetase complex. J Biol Chem 271:12294–12301

    Article  CAS  PubMed  Google Scholar 

  • Stein T, Entian KD (2002) Maturation of the lantibiotic subtilin: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to monitor precursors and their proteolytic processing in crude bacterial cultures. Rapid Commun Mass Spectrom 16:103–110

    Article  CAS  PubMed  Google Scholar 

  • Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • van den Hooven HW, Rollema HS, Siezen RJ, Hilbers CW, Kuipers OP (1997) Structural features of the final intermediate in the biosynthesis of the lantibiotic nisin. Influence of the Leader Peptide. Biochemistry 36:14137–14145

    Article  PubMed  Google Scholar 

  • van der Meer JR, Rollema HS, Siezen RJ, Beerthuyzen MM, Kuipers OP, de Vos WM (1994) Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J Biol Chem 269:3555–3562

    PubMed  Google Scholar 

  • Wagenaar GT, Laghmani EH, Fidder M, Sengers RM, de Visser YP, de Vries L, Rink R, Roks AJ, Folkerts G, Walther FJ (2013) Agonists of MAS oncogene and Angiotensin II type 2 receptors attenuate cardiopulmonary disease in rats with neonatal hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol 305:L341–L351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501

    Article  CAS  PubMed  Google Scholar 

  • Wösten-van Asperen RM, Lutter R, Specht PA, Moll GN, van Woensel JB, van der Loos CM, van Goor H, Kamilic J, Florquin S, Bos AP (2011) Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin ii receptor antagonist. J Pathol 225:618–627

    Article  PubMed  Google Scholar 

  • Zhang Q, Yang X, Wang H, van der Donk WA (2014) High divergence of the precursor peptides in combinatorial lanthipeptide biosynthesis. ACS Chem Biol 9:2686–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sander Smits and Lutz Schmitt are gratefully acknowledged for helpful discussions on mechanistic models for transport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert N. Moll.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plat, A., Kuipers, A., Crabb, J. et al. Mutagenesis of nisin’s leader peptide proline strongly modulates export of precursor nisin. Antonie van Leeuwenhoek 110, 321–330 (2017). https://doi.org/10.1007/s10482-016-0802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0802-6

Keywords

Navigation