Antonie van Leeuwenhoek

, Volume 110, Issue 3, pp 313–320 | Cite as

Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants

  • Imen Nouioui
  • Faten Ghodhbane-Gtari
  • Maria del Carmen Montero-Calasanz
  • Manfred Rohde
  • Louis S. Tisa
  • Maher Gtari
  • Hans-Peter Klenk
Original Paper


Strain EuI1cT is the first actinobacterial endophyte isolated from Elaeagnus umbellata that was shown to be infective on members of Elaeagnaceae and Morella but lacking the ability to form effective root nodules on its hosts. The strain can be easily distinguished from strains of other Frankia species based on its inability to produce vesicles, the specialized thick-walled structures where nitrogen fixation occurs. Chemotaxonomically, strain EuI1cT contains phosphatidylinositol, diphosphatidylglycerol, two glycophospholipids and phosphatidylglycerol as phospholipids. The whole cell sugars were composed of glucose, galactose, mannose, ribose, rhamnose and fucose as diagnostic sugars of the species. Major fatty acids were iso-C16:0, C17:1 ω8c and C15:0 and C17:0 and the predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). Analysis of the 16S rRNA gene sequence of strain EuI1cT showed 97, 97.4 and 97.9% identity with Frankia elaeagni DSM 46783T, Frankia casuarinae DSM 45818T and Frankia alni DSM 45986T, respectively. Digital DNA:DNA hybridizations with type strains of the three Frankia species with validly/effectively published names are significantly below 70%. These results warrant distinction of EuI1cT (= DSM 45817T = CECT 9037T) as the type strain of a novel species designated Frankia inefficax sp. nov.


Frankia Ineffective symbiosis Root nodules Chemotaxonomy Phylogeny 



This work was supported by the Laboratoire Microorganismes & Biomolécules Actives, Université Tunis El-Manar, Tunisia (grant LR03ES03). We are grateful to Marlen Jando and Gabriele Pötter for help with the chemotaxonomic analyses and to Brian J. Tindall (all at DSMZ) for helpful advice.

Supplementary material

10482_2016_801_MOESM1_ESM.docx (16 kb)
Supplementary Table 1 (DOCX 15 kb)


  1. Baker DD (1987) Relationships among pure cultured strains of Frankia based on host specificity. Physiol Plant 70:245–248CrossRefGoogle Scholar
  2. Baker D, Newcomb W, Torrey JG (1980) Characterization of an ineffective actinorhizal microsymbiont, Frankia sp. EuI1 (Actinomycetales). Can J Microbiol 26:1072–1089CrossRefPubMedGoogle Scholar
  3. Becking JH (1970) Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174. Int J Syst Bacteriol 20:201–220CrossRefGoogle Scholar
  4. Brunchorst J (1886) Über einige Wurzelanschwellungen, besonders diejenigen von Alnus und den Elaeagnaceen. Unters Bot Inst Tübingen 2:151–177Google Scholar
  5. Collins MD (1985) Analysis of isoprenoid quinone. Method Microbiol 18:329–366CrossRefGoogle Scholar
  6. Collins MD, Shah HN (1984) Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 137:247–249CrossRefGoogle Scholar
  7. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A, Gtari M (2010) 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol 60:487–495CrossRefPubMedGoogle Scholar
  9. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786CrossRefGoogle Scholar
  10. Hahn D, Lechevalier MP, Fischer A, Stackebrandt E (1989) Evidence for a close phylogenetic relationship between members of the genera Frankia, Geodermatophilus, and “Blastococcus” and emdendation of the family Frankiaceae. Syst Appl Microbiol 11:236–242CrossRefGoogle Scholar
  11. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger. J Liq Chrom 5:2359–2387CrossRefGoogle Scholar
  12. Kroppenstedt RM, Goodfellow M (2006) The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. Archaea, Bacteria, Firmicutes, Actinomycetes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 682–724CrossRefGoogle Scholar
  13. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and desoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361CrossRefGoogle Scholar
  14. Lechevalier MP (1994) Taxonomy of the genus Frankia (Actinomycetales). Int J Syst Bacteriol 44:1–8CrossRefGoogle Scholar
  15. Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443CrossRefGoogle Scholar
  16. Lechevalier MP, Lechevalier HA (1979) The taxonomic position of the actinomycetic endophytes. In: Gordon JC, Wheeler CT, Perry DA (eds) Symbiotic nitrogen fixation in the management of temperate forests. Oregon State University, Forest Research Laboratory, Corvallis, pp 111–121Google Scholar
  17. Lechevalier MP, Lechevalier HA (1990) Systematics, isolation and culture of Frankia. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, San Diego, pp 35–60CrossRefGoogle Scholar
  18. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P (2013a) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418CrossRefPubMedGoogle Scholar
  19. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013b) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60CrossRefGoogle Scholar
  20. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, Rohde C, Rohde M, Fartmann B, Goodwin LA, Chertkov O, ReddyT Pati A, Ivanova N, Markowitz V, Kyrpides NC, Woyke T, Göker M, Klenk H-P (2014a) Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genom Sci 9:2CrossRefGoogle Scholar
  21. Meier-Kolthoff JP, Klenk H-P, Göker M (2014b) Taxonomic use of the G + C content and DNA:DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356CrossRefPubMedGoogle Scholar
  22. Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586PubMedPubMedCentralGoogle Scholar
  23. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  24. Murry MA, Fontaine MS, Tjepkema JD (1984) Oxygen protection of nitrogenase in Frankia sp. HFPArI3. Arch Microbiol 139:162–166CrossRefPubMedGoogle Scholar
  25. Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9CrossRefPubMedGoogle Scholar
  26. Nouioui I, Ghodhbane-Gtari F, Beauchemin NJ, Tisa LS, Gtari M (2011) Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek 100:579–587CrossRefPubMedGoogle Scholar
  27. Nouioui I, Ghodhbane-Gtari F, Montero-Calasanz MC, Göker M, Meier-Kolthoff JP, Schumann P, Rohde M, Goodfellow M, Fernandez MP, Normand P, Tisa LS, Klenk H-P, Gtari M (2016) Proposal of a type strain for Frankia alni (Woronin 1866) Von Tubeuf 1895, emended description of Frankia alni, and recognition of Frankia casuarinae sp nov and Frankia elaeagni sp nov. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001496 Google Scholar
  28. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A (2010) How many bootstrap replicates are necessary? J Comput Biol 17:337–354CrossRefPubMedGoogle Scholar
  29. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101, DE: MIDIGoogle Scholar
  30. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedPubMedCentralGoogle Scholar
  31. Schwintzer CR, Tjepkema JD (1990) The biology of Frankia and actinorhizal plants. Academic Press, San DiegoGoogle Scholar
  32. Sen A, Daubin V, Abrouk D, Gifford I, Berry AM, Normand P (2014) The phylogeny of actinobacteria revisited in the light of complete genomes, the orders Frankiales and Micrococcales should be split into coherent entities. Proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 64:3821–3832CrossRefPubMedGoogle Scholar
  33. Skipski VP, Peterson RF, Barclay M (1964) Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J 90:374–378CrossRefPubMedPubMedCentralGoogle Scholar
  34. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Evol Microbiol 47:479–491Google Scholar
  35. Stahl E, Kaltenbach U (1961) Dünnschicht-Chromatographie. VI. Mitteilung. Spurenanalyse von Zuckergemischen auf Kieselgur G-Schichten. J Chromatogr 5:351–355CrossRefGoogle Scholar
  36. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  37. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin layer chromatography. J Appl Microbiol 28:226–231Google Scholar
  38. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and Other Methods), Version 4.0 b10. Sinauer Associates, SunderlandGoogle Scholar
  39. Tindall BJ (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130CrossRefGoogle Scholar
  40. Tisa LS, McBride M, Ensign JC (1983) Studies of growth and morphology of Frankia strains EAN1pec, EuI1c, CpI1, and ACN1AG. Can J Bot 61:2768–2773CrossRefGoogle Scholar
  41. Tisa LS, Oshone R, Sarkar I, Ktari A, Sen A, Gtari M (2016) Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes. Symbiosis. doi: 10.1007/s13199-016-0390-2 Google Scholar
  42. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk H-P, Göker M (2013) opm: an R package for analysing OmniLog (R) phenotype microarray data. Bioinformatics 29:1823–1824CrossRefPubMedGoogle Scholar
  43. Von Tubeuf K (1895) In Pflanzenkrankheiten durch Kryptogame Parasiten verursacht. Springer, Berlin, pp 1–599Google Scholar
  44. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  45. Woronin MS (1866) Über die bei der Schwarzerle (Alnus glutinosa) und bei der gewöhnlichen Garten-Lupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Mem Acad Imp Sci St Petersbourg VII Ser 10:1–13Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratoire Microorganismes et Biomolécules ActivesUniversité Tunis El Manar (FST) & Université de Carthage (INSAT)TunisTunisia
  2. 2.School of BiologyNewcastle UniversityNewcastle upon TyneUK
  3. 3.Central Facility for MicroscopyHZI – Helmholtz Centre for Infection ResearchBraunschweigGermany
  4. 4.Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamUSA

Personalised recommendations